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FORE_IORD"

i.

The solution of problems of rocket dynamics and celestial

ballistics, as well as problems of industry and transportation may

call for analytical methods in mechanics with variable mass. The

author of this book acts himself the task of acquainting the reader

with the basic analytical methods for mechanical systems with variable

mass ana demonstration of the application of these methods to

concrete problems.

Prt of this book includes lectures for a special course,

read during the ten years in the ms thematical - mechanical faculty at

the Leningrad University. The book also includes special questions,

reduced to direct application. This book will help the students of

hizher courses and post-graduate students in universities and technical

colleges/institutes to master the basic principles and analytical

characteristics in this new department of mechanics. Conilderation of

special questions, namely: motion of a point in the central field,

motiov of gyroscopic system_ and vehicles with variable mass, make this

book very useful for those employed in Scientific Re,earth Institutes

and. construction departments.

It s_ould also be emphasized, that the questions under

study are more of theoretical nature as opposed to practical. In

essence, at present, the mechanics of bodies of variable mass is of

great practical value in the studies of rocket ballistics. There

I
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(li)

exists an established theory (3) which can fully meet the requirements,

not only of the evolvinE of equations for the _et propulsion, but also

for their substantiation• This book has been written usin_ the results

of analysis carried out by the author but it does not claim to serve

as an exhaustive mono_raphy for all the analytical methods in the

mechanical systems of variable mass. The author will be very grateful

to readers, who can send their critical remarks care of the Publishers•

The author is specially Er teful to S._• Lavrov, G.N. Duboshin,

M.Z. Kolovsky and G.N• Kirpichnikov for their kind criticism of tho

manuscript of this book.
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INTRODUCTION :
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U

L-_mMlm_7. _

This book is dedicated to the theory of the analytical

system of mechanics that use jet propulsion. Such propulsions are

accompanied by separation, addition or simultaneous separation and

addition of particles.

Let us, very briefly, dwell upon the basic'historical

stages of development of mechanical systems having variable mass.

In 1750, a Hungarian scientist, Yanosh Segner invented

a wheel that brought into motion, by recoil force, the water Jet.

Segner's wheel turned out to be one of the first applications of th_

principle of Jet propulsion. The other fairly ancient application_
i /, w,?

this principle could be the rockets for fireworks and si_nalllng_ $

Russian inventor K.I. Konstantinov, develope_ construction _lans for

combat mls_iles in tlll_middle of the XIX c_ntury. The first

practical application of the Jet propulst_on p1'inciple '_].,,_J.s to the

last quarter of the XXX century, when ship construction ih Sweden

and England used pumps to reduce the on-coming wate_ from the bow,

to a certain pressure and then'_ropelled thgs water out through a

nozzle fitted in the stern. • e

The study of the motion with variable mass is also

the subject of Cayley's pro_;l_m (1858). The' motion of a chain and

the problem of moving two bodies hav'ing variable aas,_ were studies

'-by Dufour (1866),_Op_i'otzar (1884) and Hulden (1884).
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(iv)

The work of I.V. Mescherski_.(53'54), during the period

1897 to 1904, has laid the basis for the r_evelopment of mechanical

systems with variable mass as a special section of theoretical

aechanics. Mescherskii introduced the conception of a point with

variable mass, derived equations for the motion of a point of variable

mass and carried out experiments to prove this equation for a series

of problems, taken as the material point of variable mass, assuming

that the added and separated particles did not shift within the body.

The works of K.E. Tmlolkovskii (specially of 1903) on

(104)
questions of astronautics were of great importance in the

establishment of a system of mechanics having variable mass. In the

thirties of the XX century a whole series of research on different

problems of variable mass were published: G.N. Duboshin (15 " 19)

(1926 - 1930): Levi-Civita (1928); N._. Rindin (86) (1929 - 1932);

V.V. Stepanov (100) (1930); V.P. Vetchinkin (8) (1935); V.S. Zuev (24)

(1936); M.K. Tikhonarov (102) (1936).

The second World War and specia31y the PatriotiC War of

the Soviet people against Hitleristic aggressors, where for the

first time, rocket weapons were widely used, gave a fresh stimulus

of the development of mechanical systems with variable mass.

The results of military experiments of foreign authors

R. Renkin! I. Cooy and I. Youthenbogart| R. Eesser; H. Newton and

G. Gross were published in the Russian language in monographs (32'82'83)

and relate to 1950-1991.

i
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(v)

In post-war years, fundamental work by the Soviet

Scientists have been public, bed, namely: D.i:. Okhotzimskii (76) (1946)

_.U. Ishlinskii (25) (1946), A.A. liosmodemyanskli (33 " 36)(1946- 1947),

F.R. Gantmakher and L.M. Levin (11'12) (q947), Ya. G. Panovko and N.V.

Butenin (78) (1947), A. I. Lurier (45) (1948), I.P. Ginzburg (13) (1949),

these works are the results oi strenuous research by these _c:_nti,_ts

during the Patriotic War (Second World War).

The works of Okhotzimskii and Ishlinskli play an important

role in the development of optimum trajectory in the central field.

In the works of Kosmodemyanskii, Luri_r, Panovko and Butenin systematic

description of mechanics of a solid body of variable mass Rre given.

The works of Gantmakher and Levin are dedicated to the study of

equations of propulsion of act:_al rockets, that have an inner movement

of particles. The specially important contribution by Gantmakher in

the development of mechanical systems with variable mass, must be

mentioned, Having carried out a deep study of the influence of

inner movement of particles, Gantmakher (11'12) comes to the integral

formulae for the principal vector and principal moment of

reactive forces.

During the last ten-fifteen years, numerous studies have been

carried out, for both, separate problems in the motion of systems with

variable mass as well as for problems of developing an analytical

mechanic, s for these systems. _ince, in the Soviet Union, these

analysis were carried out more intensely, it is only possible to

mention the names of some of the Soviet Authors: N.A. Slezkin (98' 99)
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(vi)

(1951), V._'. i,otov (37) (!955), V.S. f_ovo_;elov (57 - 59, 62--75)(1956.1_)£,5)

V._,. _h:_pa (56' _8-97) (1956-q961), _!.._h. Ar_ionov(1'2)(195S, I:J59),

V._. ;<arar_odin(29'30)(1955-1963), ,_..I. Lu_'ie: '(_6'47) (1961, q'64) ,

N.G. Nay,n,_radze (49-51) (1959-196q), F.A.._ppazov, ,,._. Lavz'ov,

(_,)
V.P. _:i_h_n-- (1966). Importance was given to th,. stu_ie_ of the

semineri_n A.I. Artobolevskii at the institute of m:,chineri" regarding

probl_ms of mechsnical ,|otion, taking into consideration the variable

mass of elements end p_'oduct:_ under fabrication.

The develo!_ment of contemporary technology _md its qualitative

changes hnve brought about wide applications of jet propulsion that

require solution of new problems in propulsion with variable mass.

When setting an: analysing such problems, it is worth while to note,

the relatively small contributions that where achieved through the

development of analytical methods of _tudy of progulstion systems

with variable mass an_ the solution of certain concrete problems.

This book, which consists of ei_ht chapters, deals with the

basic questions of analytical mechanics of systems with variable

mass. Chapter I is dedicate_ to the study of the motion of a point

havinE variable mass and at the same time taking _nto consideration

the effect of the inner motion of particles. Chapter II discusses the

laws of motion in a mechanical system and solid bodies with variable

mass, Chapter III and IV clarify the analytical properties of equations

of motion in holono_ic _t non-holonomic systems with variable mass,

Chapter V contains a description of special characteristics of mecha-

nical bodies with variable mass, Here formulae are evolved for the

principal vector and principal moment of reacti_ve forces, as well as

for the angula_otation velocity of the main inertial axis in the



(vii)

body of variable Mass. Chapter VI studie_5 the analyticel properties

of differential equations, describin_ the motion of gyroscopic bodies

with variable mass. Chapter VII is dedicated to the problem of

selecting the optimum trajectory of motion of a body with variable

mass in the central field. Here, only those questions are discussed

which are directly connected with the description of motion of a body

with variable mass, by setting various problems. Chapter VIII deals

with the st_dy of stability of one-wheeled vehicles of variable mass

and also discusses the movement of sledges and automobiles of

variable mass.

ooo..@..o. _ .
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C HAI-'TZR-I

I;cTI_.,_ {;1,' _, Itl:_T }£,,VI::G V,,.d;_:)L,'] I_A;_._.

the }oint" "I. :iquation of llotion of ' _ ,_v:n_ Variable I;a_s.

I. G_,neral i_emarks:- It i:s nc,ce_s:_r:, to ob_;erve thmt v:_-i:_tion

of mass is not to be un:!erstoed :_::itc creation or d:._ _pr)l:_,_nce, it

rather chara,:terizes the proce_'_s o; a dition to or ejection frou the

body of partita s. _uv objr_ct of _tudy _,ould be a cvoter; of :_nrtic!e:_

with constant mauses. Cert;i_l particles leave the e?steu under ntudy

an ,_ he': _,a_ticles teke their nlace.

i _chanics is concerned with obtainin_ the en,_tions of motion

of the changing system of !_articles and their study.

ik

I

It is known that the theoretical mec!:anics in conjunction

with the existing ideas about matter (material) point has accom,,lished

a considerable analytical sim!-lification of tho structure. It is

possible to develop a complete course of the mec!_a,_ics of system with

constant masses based on the Newton's differential equations of motion

of matter point through logical discussions and analytical computations.

This method can be used with advantage for the systems

havin_ variable masses. Ho_:ever, the application of this nethod

requi'res the concepts of matter point having variable mass capable

L
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o_ ,-hew in;..-,th,_ c_in.,:Ic_,character of i_ter-:.cti_'_J o.i"t;,<'body

c,n,:_i_tin C or t!_ _ovin;7 t_:_]'ticlea_. For thic_ it i:_ con%,e:_ient to

aio_:t th:: ut_u:_l interl;ret:,_;ion of k±neu:_tic:; of ::.point a],d of

_ :zo]i_ bod_" and ,,:::l,'.eu_e o+" the _,jencJ':_i_'[ c_crdir::.t,::_ "n, _ c

idea], cox_str;_int9.

mass 8s a set of ,_?tic!eu which, :_t a tithe t, :,.to fr_ur; '- reF_ior.

limited by a ccrt:Jin controlled surface, _?'_i_.'.r_:;-:ion, acco_.;,in,' to

the [;roblem, m:-_.." be ._u_._oced te be r:'ovJnj to<et],,'r ',.:_th :_oue

,seometrical poil-t. 'fhe riotion of the _;pecified }-;article:; m;t_._be

e::tirely different £rc_.! the :,_otior of t],e (:_n::oci:,.ted) ,,eomet_'ical

point. It _.:i:.lbe u:;eful to ]in!: '_.'itht_e. i._ovin; ]-e/_ion the body

whic!_ will v.'or:_.-_:.the ".'r:tr_,,_,:,.n,=the r.;eti,_::o: ti',_ "_i'ticle:_ ;..,ill

be examined _,.ecor,._i::_-'ly.If +_'_." $o!i'_ bo_?_" it:=e!f _.:hoc_..• si;:e or

rotvtory nmtion :_.,_e n(;_lecte_ in c.')nsidered in _.l:_ce o:' tb.e _,'int

havin;- variable mass, the outer cove_'in[_i of t_:e body _ill ,_e_ve ,_.._;

the froneo

In com_lieated dynami=:._! problens whe._'e the translotory as well

as the rotatory motions of the solid bo,Jie_, h_.vin;: w_riable mas,'_ are

studied, each hod> must be mentally bro]_en up into i;_finite number

of small reEions whoso v,'locities coincide with the velocities of

the the correspondinE Eeometrical points belont'._in_ to the coordinate

system, firmly connected with the fra_e of the body. These

_eometrical points (i.e., the moving.' re_ions with chansiu;_

composition of t[_e particles) will be identified as point_ h._.vinc

variable ma=s comprisinc the body under study° The pal'ticles will

\



pss[_ throu_:h th, ne "point:_' taut:in, _ c}:an_.e in their ma:_,_;e,':.

However t the velocities an_i the accele,.'ations of these "point,_",

in e,_ch c_se, will conform to the Io':s of the: solid kinezntica.

The su:'_ested al_nroach in the fr:_e-work of the structure of

the mechanic:_ of ,_yste_-; _;ith const:.'.nt ma,_ses sets out'the fun,_,*:_.e_ t 1

la_,Is and ma_.e_ it po,_iblc: to inveutigate th._ a,:nlytical featu_"e[_

of the motion o" the _y_te,,_.

°.J°

2. Derivation of the _:_u:..tions of _!lg.ti-oH:- ,,e will 4evelo t!_e

equations of motion of a point ]_vin,.: a variable mass . ',;,_nsider

a s,Tstem of the particl_.s _._ith const:_nt ma_s. 'i!h___svsteI:, con:_ictz

of particle._; v_hich, ::.t a tiue t, build the mntt,_r i:oint :,n._ ?I_o

o_' those .:,articles ',:hich joih tile matter F_oint i_. th,.' il,terw_.l _t.

To thi_ system nppl.'{ the rule o_;' chance of the principal vector of

momentum.

equal to

;_t time t, the princip_l vector of momentum of the sycte_" i_

- _ '_ ju_

where the first summation ranges over such particles which in time _kt,

join the m_tter point (masses of these particles a_-e denoted by _i )

and the second sum_ation is taken over those particles _hich, :'.t

instant _, make the matter point. Their masses a2e denoted by mj

and their velocities by uj. _ is the velocity of the jth particle

which, at instant t, Joins the matter point.

The principle vector of the moment of the system at instant

.-$
l
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.'.h'_"; _.:. i:" th"

1
!'_,':!ty ,_.; !.}.,. ith "

'" ..... " ",.:_,' t]e " ;t"r <.'.r_t

tiele :t Jn : nt t + .-'.t

: ,u' ._ t" _ 4:hc -,"o,".ti ": of '..'o_Jc...:'t_.... _:,!:inE the

:,,,>-i.,:r->,.,i_t :-.t i.::t nt t . n, ,_nt .u'iuE in "]:e <cc,;n t ;up_,m'-.tinn _=re

not on:.[' c}_'_, :in:'.._:,,ntinu:;u_ iv :u_'..enl:.:. ,.="ho-,,....."_--.,, :,_ i __._ .tL ,,',,

. -

..... _ I _,_ ":-.r<,.:t,.'LU ,;,,._]th" t the ,,,-._,.r:!:_;.:, of :'_'t.i.<:l , ................... ,

i;e., it t,_'n._:_to ,,ero "n /'Lt t n:: to "cro.

..... tion o _ :n ;_::i'i-;'$' :L" t:,,-o? .<..,_ n _, inL_:)2Li ,,,_c*%-e _ :. .....

. uch _ "c,_,::., t}. ' t :-one ,_,:';_".:" cf th._ ,'_y-t...r: <,:;:rci: e irk t]_:" ::' tter

..'_nt th_ u_,h -ut th_ zotlon. -.'h._nthe v,-ct¢'ri: ! v %ue cf the

_-,,t.!nu';u:_ ch, n _,_ v,:]_ucity ,';f ' "' .r , ..... .. .. .. O-_n t.':clc in +i.':C t _..... ,"7.

to

_'<C'FO ""

e I•
r "''[_,) i k L t + t _ ,

is the ::c<,:.lev:ti:m ef the n:tte= ...._int, :i..J _=_4 " 3 ,'.r_

r,'!_,tivc (v .'" ,) :,n,'c'<'ic>!i_'o :'cc_.l(:r'tion_ of i-t9 ::_:rticle in

r........ct of the :.u:'il_i r5.... tern. C.. is infinit_:::_-_ I of the

order. ,5_,;-i!i:{o.,-c,_le: tion c'n be ex_)rc v,e: : s:

.,>con:]

.'r', = 2( "'-'x ,.
'., r

°_

in w...zcn," i.< the _:ngul, r v(:!ocity of rot.::ion of the :_uxi!iary

system of the coorc:inntes_ ce,d _J is ,;v.,....,, (r _'tive) v,.!ec._ty

of J-th p_rticle.

$

<



_ince th__'velocities of the particlen ¢ou]_rininl] the m;_ttc_'

u_int at in::t;tnt t m;ly ch_,._.I_eiq_ul,':_ively, therefore;

uj _" " "J "_)" , m A = ."_.,m. (;c' + _, _.l_ LSt -

<_ - -k -k "_' -2 G_). .mk (_L, + "1,., +"-- e r ,. 2 ...... (n.1)

-1 -2

whose velocities: underf;o im?ulsive cm_,;,',, in time _t. 4_k r,n4 u k

nre velocities of k-th pa_-tic]e at in;;tants t an,: t 4 Lit rer;pectively.

!
I

' I
I

l"ut m,.= ,_/l k

'2hen the increment in the principal vector of moment in tim(, /l t

will b ._ equal to :

-2 "q .;, -J -j

A'_ : ,_(t* _t) - q(t)=b_Zk%_.(u. -u )+L. mj(_' + ";_ + -u-'C) &t -

- -k -k

-k -k
and _ are relative (averase) and the Co_,iliso

wh ,re _c r C

accelerations of these oarticles till or after the required impulsive

chanre in th._ velocity occurs, We have:

Z%t = e , + mJ_C * rJ
÷

" " Uk 1"

we note that under th,_ assumption



_L_k "_ _ as At--_ O.

and 01 denotes the infinitesimal of the firnt or_er.

;:in-.e, b virtue of the law of change of the principal vector

of momentum

m

Z_ t

when z_t _ 0

whet'e _ 8enotc.'_ the princi_l vector or zhe external forces,

actinr_ on the P_:_'ttr _)oint_ then assuminL" the existence of the

derivatives, we get

..... (I .2)

,......,..%

Hece m =_ mj i_ the mass of the matter point and dd_t=YSe is its

acceler_tlon. _ will be called the r_active force.

_eactiv_ force R is equal to

!. (I 3)

= _-z_,m_" +_ ..,..(I.,_)
r

J = - 2 _c x m_ ,
r

•.... (1.4)

Summation in (1.3) and (1.4) are taken over all the particles forming:

the matter point at instant _.

will be referred to as Coriliso force.

will be called impulsive force and is given by

!
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qFD=-_ at ( u - ) ('1.5)

where the sui1mation if: carried over all the directions arounc] the

matter point, in which the imnulsive chancre of the velocity takes

place; d_ is the intensity of the flow of _,articles in a given
dt

direction.

Putting
m

2 I
u -u =,5_

we obtain th,_ im]'vlsive force, in the fo_r,_

.. Zh_ = /_ , where L_ in the impulsive chani:e of r_!ative
, r r

(aver..u_e) vel_city of particle at a given inst_nt t,

the impulsive force r._ay be defined a'_ the surface integrR_l aa

(6) ...

over full solid ansle _ = 4]_ around, the matter point, function_

signifies the specific value

In vie',: of the derivation of equation (I.2) we may _ive _noth_-

definition of a point hav_ng _ariable mas:B. It is such a ,_,oving

system of the particles with constant mass which i_ concent-.ated
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du_'inC th,: motion i_i a i'o[.ic._lli,lovi;_;_',_th a tort in .,'co_.iet_'ic',1

_:oint belonci,,!, to thr au::ili;'ry sy.3tem of the coordinates. The

:_izc ,_f the movini*. ,"-_yntem (body) can b,* n_f_!ect_?d.

Ift a :_oli:_ body, h,-.v:in,.'._ vuriable ;,lass whos,_ _ir-._ i:_ u,'_,,loct,,_',_

i_ co_ "id,_red in !,l:',ceof ,-'x?oin% the co,_vd_l'_t_to 'cy_te;:lcol_ ,.ct_.d

,..ith the body c:ut be ch(_.'on ;c; the :_u:,,i].i;*r2.":,y:_tem. Ii_ t:_#:; c:,_ne,

the avet'ai::e velo,;itie_ :_nl acceler,.t_ e:,.:::'.,]':t,_,_ t, the l-ody ,.'_.]I

b,, eciu_,l to t1_c :ivo_",.:e vciocitios and t;_ ac<'ele_':_tio_,:: in ,',:::?oct

of th" a_;xili"_v.," sy_tei_ ,_n,i the Col'iliso nCce].,:;':_tion_. "_!] ._[:_o

be the s&me.

Any system s:_tisfyin! o the ecquic(?_,icu_t,';of out' dvf_l:ition

can be c]_oren a:_ the' auxili:_'_. , ,:::_-t,-u. Thcl',2 :u-e t'..,oi,o_::.:iblo:v4:._?..i:_ry

_,':_el,l_ refe;'rod tr_ the .'3y_teI_ I "u%,_ _;';',':to_,i_I. 'Ohey mU_'t h'_v,: one

[_one.val point _.litb ',.:hic'._the la..'_.tter_oint coincident. _h:cc ,.,o

neglect the geometrical dimen,,;ions of the rt,cion_ investigated by

,,c;:.nsof ma_. rial pol'.;t havinc ,% variable m_;_:._ :,e must :_1:7o ne[',lect

tile r_'tatory 'elneitie_. of the geometrloal point:." belongin:" t<, the.

region, ._o,lp;.:l'ed ,,-'ithth,: velocity of t_,: transiatory motioll_ which

is equal to tile velocity _ of the material _oint. '?',:.refore, we

write

_r_ -" _r2 - _r _

. . _

"'_'e_ = ":de2 : _ "

llere, as before, the relative characteristics ave deterlained in the

auxiliary coordinate ,'_ystem.
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r_' ::I _ r C2 "_ 2 "" r

where _'_: 1 and _'2 at<, t}',_ ,,_;ul.,tl, v_:lociti,:,_ of the. m_t ti,,n o'" :;,.':_tcn:

I and II,

Oi' accele_':'.ti,,_L::,we h:_ve

o

= ,_,, + 2 (., -,, ) x u +r,._, _,."_ r 1 1 2 r 1, !.

-c'
in " " '

12
den,_t,_.- th,.'_ccelemtliou o:" t.h:_,t_o l_t a£ :_y._tem I_

with _-_hic'_the i;u_';'ivatin_'V:t_'ticle coiucidm:_ :_L in_t:mt t. _;in_'e

-c
tile ac cel e_,atiou','-'

12
iu ._y:_to!r.I1 _;u_,qtbc calculated, and all _tudicd

particle_, are fr,un3 clust,-roH in the (/choral point determinrd by

systems I and II, i, follows that ._,qe : O. "e _:b-'.t

therefo_(_,

u.el_2 : Xerl + 2 (_dl - '"2 ) x _r

'tCrl '"rJ1 '= 1'r2 + _"_2. (1,S)

Imp_slve farce dce_ uat depen3 upon th,, s_,lectiou at' the

caord_nate system, we may, %h_-'efore_ conclude from (1._q) tiv,t the

impulsive forces do not change for differ_,_.t au'<ili:_ry _ystemo.

i

-!
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ch:_n[:e of [:,a:3;_

_'Ormula (1.3) exl;re:i_';iJ_."ti_,.r_'nctiv,., fc:::ce t,:*,:iu:i(;i'

it li, c, in the fact th'_t v,,ry cftel_ th_ ?roce:._; nT'

_,'_l:_ay _n wel.;, be @_%,-;:P(!ed_u the i_l'0ce,:m-r-._-'iml,u!rive

:,nd (:ontinuou_ ,_.,,.iL_,e.oF.v,,lowitj _;Lth a c,:_b_i,'..,r_ble;_cc:le_,:_tiO;io

it c_u_ be seen fr_I:_ the derivntion o/.equ:ttion(1.?) _ . .

proce,_s which is ta,,en into acco:.nlt ip ;_,?terl;,izil'_..':_,. 65' ti_e qu t,tity
#

•-It r in (1.3) wt' h._ve t'le avernge accelerationwhen the v'el/_,"i_y
.. . :.

continuously _h:_,,_.,,es,i, _., ii' tl,el,o _e no ._.u:,ul'aivo ch,,n_:e o'f

veloci _,
_., the pal'ticle ,,,ould }_ave t,h_?abov_ specified _cceleration.

_inee the r.la:._sof par£icles _1% i:: in£i|litesimal oC the ol',_lerof _t,

therefo_e, :u_y fini_ cli,_n_.'ein the s_ec'_fi,._d'._vera_e acceler'ttion

:loe_ not lea,_ tn the c}lan/?e of the re,_ctive force.

Fr,m here it follo;.,,n theft when tlie,:'..roce:s o_ chan!:[e of m'a:_s is

regarded as the ;_rocesm of i'.1_ulsive an4 contiuuous chani-,e of

velocity, it co:!:_i_erably effect_ eitlh':' the i;_ulsivc force (in"this

%

case the corresDondin L" rolative,aueeler_ttion r:_:_yb_;..suppot_ed t_-be zero}_

oz" the component m_,r, where_Or (lenot,._s the total, rel:_tive ac(:ele-

ration, in order" to avo_% the _ifficultio_ iu determ', ,.;°; i,_: the

reactive force, the 9tron_: effect;_ ar,, not t_,2en iuto account. It

is ex_edient to treat afly }_roce_ of c!lange of mass, for wh_vh the

averm_,e acceleration of the total ch'_-_n,qeof velocity, however, large

ha.': relevance, a,'_a non_impu_iive ,._roce_s.

&

3. EXAMPLES: We _ill di_.cuss two examplns i]lustratin;; tho

appl_cation of the equation _f motion of'a _oizt hav'in_", a v_riable m, sm.

@

i

1
,!

I

..i

t
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P.c I

Fit:. 'I

1). We will investigate the _,ocox_diu:: motio1_ of a roci, o_

whoso construction is shown in Fig. 1. The larc,_ ve,_._el I containr

li0ui._ fuel (coI,_burtible li_!u_d) which is oucked by the pump ", ti_z'ou_:h

the canul 2 _._ith au averace velocity of -rV 2 and an avera_Te acceler:ttion

r Then the liquid pushes out through a narrower canal 4 with
°f'A' 2 "

au average velocity of _r In the• 4' and average acceler_tion of T_' 4"r

nozzle 5 the fuel gets heated and leaves the rocket with an average

-r

velocity of _5"

It is convenient to take the syste,_ connected with the body (frame)

of the rocket _s the auxiliary system. It is sUp,,osed that the

dimensions oC t1_. nozzle are negligibly small.

.hereactive_oroe_illbe.q,,alto_--.:,.,_-m,+.'_,_÷e,

where ma - mass of the liquid present in canal 2 m 4 - mass of liquid

present in canal 4 v we neglect the average velocities aud average
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accelmration of the pa1"ticles in th,, ve:_sel i. The Co_.iliso

acceler-tions _il] be equal to zeor a:_ a consequence of the sup Josed

a_cending _otion of the rocket, '4e have

= .... _2 ) -

where _ denotes l'ate of fuel expenditur,,.

_t o, _ m(_r . _) Z r
= dt 'YS'

',.;emay _v_.ite

In the _ven oase_

where _2 denotes the _._evsecond dischar_.e of the raomentum of the

8as issued through the nozzle. The equation of motion of the rocket

on the projection on ,_n axis, directed vertic_lly up,lards, is

_r

Ili_' = - |n_'_' + ra 2 1_2 + h'1|,l'_| r ÷ "_2e
(1.9)

we neglect the air resistance and pressure of the exit gases on the

rocket.

Accuming that the average accelerations of particles are

constant, i.e., the pump works with the uniform acceleration, we get

r r
m2w 2 + m4w 4 m

where.= co:,st, o_>O.
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. . )rt2we also h:_ve In = m ° _t V= con(_t >0, ) = const > O.

therefore

r

'_2 = bt + ct",

w_,i_re b,¢ = tenor >0.

Hence

a + bt + ct",
x = - _: + .... . (1.1_)

I.I° - Mt - /t 2

integra*_-_t: (1.10), we f_et

t t

t _._. + I dt I a + bt + et_x = Xo Xo - 2  1.11)
o o me _ %it - Irre

i_;I,IAR'<&: I,L obtaining th,, equntion of motion o; th,, re,::_t

we have _e{:lected the _,ol_e of nozzle, ,:e_-:_;11,_.,lwiIA, the vol,n;_e of

the duct. "vie now s_}p_oso th;_t it is possiblp to ue_'l(.ct the v,_lume

of the duct, com_ared with the volume of chamber _u_,{ the jet

propulsion I_ozzle. Con:_ider anothe:' diaL:ram. 'Ph,_ fuel' hi,,: the

oxidiser fall ill tnt_ combustiolt ch'_mbet'. They c:et he_<ted and rush to

the nozzle an_ le_ve the.',_ocket with an avel'a!,e velocity of _¢r. The

....restricted acceler,_tion_j is responsible for :_+_y ch,_nge in the

velocfty of J-th _article. In this c_se, the i_':_pulsive forces

o _ • . ]disappear and the ,.orlll'_o forces_ as befor,_', at(, equal to zero

in view of th(. translato_" motion o? the roc_,et. We have then

R = -
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Denoting by Qr the principal vector of an average momentum

of particles which are found in the rocket at a 8tven instant to

the summation is carried over all the particles found in the rocket

_acket (casing or hull of the rocket) at a given instant t. At time

t + _t the j;nmatton is taken over the set of the _articles com_rising

the rocket

Qr(t+At).
,¢ J

J1

n_l Ur_ 1 ( t ÷ _t )

then

,

7 •

r (t,_t) = / (t+z_t) - (Io_)

J _2

..... .__JI ........ " - _.......

The second summation on the right hand side of (1.1_) extends over the

set oz the _articles entering the composition of the rocket At instant

t and leavin8 the rocket in interval _to From (1.12) we find the

expression for an infinitely small increment

• _ "_;r_ 4t - _ ,_2;r_2 (t, At) , 02. (_.1_)

'i]
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divide (1.15) by t,t and proceeding to the limit as _ t tends to zerot

we get

The quantity .-"

Qr
2 - llm

t_0

(1.16)

represents per second discharEe (expenditure) of average momentum of gas

through the surface of the rocket. By virtue of (1.12) and (1.16)

we get

= - dt

If the process of combustion is steady then

suppose the combustion takes place by uniformly increasing per

second discharge of the mass, then the ma_ of the rocket may be

exlpresseA by formula (lo10) and _t" a w constant and ascending

motion of the rocket will be described by the formula (lo11).

2. As a second example we consider a Jet propelledaeroplane

orbiting in a horisontal circle with an angular velocity of_and

det_rmines the radial yro_eotion of force F on its surface. Fil.2
r

explaino the ill_stration. The point having a variable mass sucks air

from the direction to which it is propelling with an average speed of

v_ and issues.out in the opposite direction with an average _peed of

i
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Pjjc.

F£g.2

r In the process the point loses a part of its own mass and thusv 2 •

r
the lost particles fly out with the air at an average speed of v 2

Suppose the point describes a circle of radius Re _£nce the

impulsive force and the average acceleration operate along the

tangent to the circle I the equation (1.2) on projection on the radium
e

vector gives

- mmr_ - F r ÷ Jr0

m

vhere is the pro_ection of the force F on the radius vector, and the

. r
p_aect,on _T of the act*l,so force is .quel to J - 2_.___ ..SU_X,_)

where oB_X denote_ the mass of the air present in. the access duct, and

_UX denotes the ne_s of air and of particles of the gas in the exit

channel. The coordinate system connected vith the aeroplane is taken
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as the auxiliar)" system.

Then the required force is

Fr .-. _ 2r ÷ 2 _ ('Bx'_ +'%b_'_ )" (1.17)
'U 1 _-." ..._.-''ul of tho..... _, ,; };d i', ,_ t't," 'u '':_ ,._f ,.,ir " .... i.:]l the ('r

,4_ _. _I' ,':" ' .....

._ ,..C C.: :_;:_,!tzCt,

dt " p_,r second expenditure of the mass of gases through the

cross section of the exit channel. 11, 12 - longitudinal dimensions

of the access and the exit channels.

We will try to describe the motion of particles in the access

duct. Let _t be the time taken by the particle8 in passing fPom one

section to another which are ,d _ apart. The mass of the particles

press, t in the canal between _he above two sections is equal to

At. Since _t z _ , then

v 1

mBX v 1 =
(_._8)

Similarly we can find that

mBblXV a ,, i:, (1.19)

substituting these values in (1.17), we have

_'t w J%.

Y r - - o_ r + a(_u ( 11 +

|

LJ

(1,20).
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For _et propelled aeroplane, we have

therefore, the second component on the right hand side of (1.20) is

much less in absolute value than the first component. The second

component is referred to as the correction factor. If the aeroplane

flies from a given instant with a shut - off motor0 the second

component on r.h.s, of (1.20) becomes zero and the radial force equals

centrifugal force m _r . It can beseen that the _et propelled plane

on turning requires a bit less lateral force than the non-Jet

aeroplane.

. ME_HERS_ EQUATION:

I. Derivation of the E_uation:

We will suppose that there is no movement of particles in the

material point, i.e., the leaving particles remain in the matter point

till they Leave and the Joining particles acquire the velocity of the

point immediately after Joining. This mode of change of mass is known

In this case

m

ur m1_r 6 0

therefore,

_..

i

_ "Z--- • 0

t

i
1
t
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The equation of motion of _o_nt havin_ a variable mass_ it then becomes

m

_v
. _. r ÷L_ (2.1}

the impulsive force_is given by the formula (1.5). The final

velocities u2 of the particles which are added to the matter point

at a given instant t and the initial veloct, ties ul of the leaving

m

_article8 are both equal to the velocit_" of the point. Therefore,

we will h_ve

(I) (2)

(2.2)

(1)

(2)

is carried over all the processes in which masses are added and

over all the processes in which masses are substracted.

Wenc_e the velocities of the eenter of the inertia• of
m m

_oi_in_ a_.d leavin8 the particles respectivel_ by u I and u2, then

Z_ ._- - _d, 1
(1)

dm 1 R ,__._ d_

(1)

_ G_- G2_,,2,
(2)

r

impulsive force can then be expressed a8

(2)
J

I

\ __J
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(2.3)

dn I dm2
Since-_ , represents the rate of the addition of the mass and -_

repreBents the rate of the substraction of the mass, therefore,

n = n O + E 1 - m2.
(2.4)

n is constant and equal to the mass of the matter point at some
O

initial instant t, n I and m2 are non-negative functions characterizing

the addition and substraction of the mass n I is the general mass of

those particles which are added to the hatter point from time t o to t,

and m2 is the mass of those particles which leave the matter point at

the same time.

Equation (2.1) can then be expressed as

-P÷ dt at

t

It is known as Heshersky equation.

then

we get

2. Special C.ases of the Mesherak_ Equation:

(a) Suppose only the process of addition of mass takes place,

n 2 - O, m - mo ÷ m1

\

l

!
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then the Meshersky equation will be written as :

d; dn
n_., _ +_y ( _ = ; ) (2.6)

where u denotes the velocity _1 of the center of inertia of addQd

particles.

(b) If only the process of the 8ubstraction of mass takes place

the_

therefore,

n I " Ot

dn2 dm
dt _ " dt

m = m0 - M2 .

tbe Meshersk_ equation (2._) takes the fQrn of (2.6) if the velocity

u2 of tke center of inertia of leaving particles i8 denoted by 9.

(

(c) Suppose the mass of the added particles in any time interval is

equal to the mass of leaving particles in the sane interval, then

11 I m2 I 8 I 0

the Heehersky equation (2.5) beeches

• d4_t, 7 ÷ d_ (Ul" t2 )

p

Consider the simultaneous addition and e_ection of the

particles when the velocities of the centers of inertia of _oining and
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leaving ma_ses are equal. _n this case

:. impulsive force is given by

: ( at - ) (G-_).

By (2.Lt) we get _ : _ (U - ;). Here again Keshersky equation (2.5)

t_e_ _he foz_ (2.6).

(e) When the veloclties of the changed masses ul and u2

to zero. In this case,

then the Meshersky equation will be written as

are equal

(m;) -- F.
dt

(f) Zf the velocities of the changed masses ere equal to the

velocity of the point i.e., _1 = u2 _ _ then the impulsive force

becomes zero and the Meshersky equation takes the forB



Example 8how_h_ the Inadequacy of the Meshereky Equation:

!

The Meshersky equation, as can be seen from its derivation, is

strictly applied to the motion o_ point of a variable mass only when

there is no intejaction of particles. Thus if we wish to solve the

problems by mean8 of the Meshersky equation, then in the problem of

ascendingmotion of the rocket we will not take into.account that

part of the reactive force caused by the relative acceleration of

the particles, and in (the problem) studying the motion of the Jet pro-

pe:lled aeroplane

We would consider an example which will elearly brink out the

difference between the equation (lo2) and (2.5). A string BC passes over

a fized pulley (Fig.3). A weJ, ght Q is suspended at one end of the

string and at the other end hangs a vessel of the constant tra4asverse

section weighing P; and filled with water weighing P2" We will neglect

C

¥iS._

f
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a

the mass of the string and the pulley A. _uppose the system in in equi-

librium. In this position _the shutter (damper) is quickly _owered (pulled

, down) on the vessel and the water begins to pour out., We wlll

determine the acceleration of the weight Q.

Ignoring the friction of the water along the walls of the

vessel, we may say that water will freely fall, i.e., it will have

acceleration g. And the acceleration of the weight will be given by

(:).8)

We will apply the Memhernky equation to the matter point having a

variable mass, consisting of the vessel, together with the water in it.

In this case only the ejection of particles has relevance.

Consequently we may proceed from equation (2.6). The velocity of

matter point having variable mass in terms of the pro_ection on

X-axis will be _l and the projection of the absolute velocity of

leaving mass is equal to gt, therefore,

( P1 + P2
g ) X " T - PI'" I)2

P2 k
Here _--. _ is the mass o_ the water in the vessel.

L

the pull (teaslon) of _he string. We have

-gt-x).

g

IL-- St- :1:

therefore,

- X + C

J

k_-_ . -.-_::_-., ._ .................... "

' !



r

t

-25-

To deter_ine the constant C we see that for t m O, h - 1 and x gO,

c . 1, therefore, the acceleration of the point is given by

w gL Q " P1 " % " " ÷• K-_ ( x _I st)

PI+Q+I -x-

%

Equation (2.9) evidently does not agree with (2.8). Hence

tke Meshersky equation cannot be applied to this problem.

Now we apply the equation (1.2) to the matter point consisting

of the vessel together with the water in it. We take the coordinate

qstem associated (connected) with the vessel as the auxiliary system.

They particles of the water droppinE out from the vessel will have

absolute acc_lerations and will be equal to the acceleration due to

gravity g. The auxiliary system together with the vessel will havre

figurative acceleration x.

The projection of the average (relative) acceleration of the

water particles is, therefore,

(2,9)

Wrx " " S- x.

The auxiliary system moves tranalationally and the velocities

of the liquid particles change continuously without any impact.

Consequently, in the present case,

m

J= C._-O

.f
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Equation (1.2) in terms of pro_ection on X-axis becomes:

lg _P1 + P2 "x- T - P1 " P2 + Rx'

P2 h P2 h ..

where projection of the reactive force is Rx - - --_ Wrx= _ (g + x ),

therefore,

we have

--P1 x = T - Pl"g

lu view of the relation

Q " PI

W -'X : g Q.+ p,_,

which is the sane as (2.8).

_. TWO_PROBLEMS OF SIALOKOVSo

_blem ,of Sialok?v:

We discuss the motion of point having variable mass and

emitted (radiated) in the cosmic space. We viii neglect the inner

motion (inters©riCh) of the particles and assume that _ke reactive

force considerably exceeds the forces of resistance and gravity.

We write the relative velocity of the radiated particles as

constant, find the laorenent in the veloelt7 of the point when a

specified change in Its mama occurs. This enunciates the flret

problem of Slalokovo _0_ (19_0).

___z _ '¸ _

i
iI
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The studied motion of the point is applicable to the case

in the precedinK section and is determined by the equation(2.6)

which takes the form of

This gives

d_ dm "

m_.- - _ ul.i.

d; . - ur _ _ (3.1)

Suppose the reactive force does not change its direction

in the space, then _ t c-oneida. Integrating (3.1), we get

!
I

5

; . ;_ + u:n _ (3.2)
m

where _o is the initial velocity of the point and a o its initial

mass, m denotes the mass of the point at instant t when its

velocity ia Calculated te be _.

(3._) is called the Sialokov's formula, The _ialokov _ormula

shows that the increment in the velocity of the point having a variable

ass8 under the Sialokov'a conditions is proportional to the

lolauth_io, ratio of the initial and first masses.

2, Second Probl.om of Sialokov:

Sialokov published hi8 relear_h _lO_J about the motion of

the rooke_ in the constant fiel_ of sravity, We will fiud the

oolutioa of the second problem of Sial,key in the modern notationao
J
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• • i 1

(homogeneous)

law

Let the point move vertically upward in the uniforu

field of gravity and its ma_s _ary accordinK to the

-_t
II =Ioe m Gonmtt| mo conat)>o. (3.3)

Amcuming that the par_icles are propelled with uniform

speed, investigate, the velocity and the law of notion of the pointo

Equation (2°6) becomes

dv dm (3.4)

P_o_ecting both the 8ideB of the equat$on (3.4) on the vertical

axis, we get

d_ dm
r (3.5)

From (3,3) it followB that

dm
--" f _dt
I

therefore, we may rewrite equation (3-_) as

dv
d"_" ! (q " 1) ().6)

_V r
where q --'----

E
is inteEration of (3.6) given the rule of ohange of

velooity of the point, namely,

i_

v = ( q- 1 ) It + v 0
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d8

l_tting v - _ , we find the law of motion of a point in the form

2
8 = ( q - I ) __ ÷ vet. (3.7)

It indicates that the initial reading of the dietaries S

noved by the point coincides with its initial position.

Suppose the fuel burns for time t which we will now calculate.

From (3.3) we will have

m -' nee" _-'t'tl

therefore,

where

!
amnmemm= (3.8)

m G

/-los T

be

When the active motion ceases, the velocity of the point will

v 1 = ( q ° 1 ) g_ ÷ v o_2

The .displacement of the point during the active notion i_

round by substitutins the value of t, in (3.7)

, 81 = ( q. 't ) + Vo_: (3.9)

We viii nov develop a formula for the full distance

traversed b_ the point durtnE the aQtive notion and also the d_s_ance

moved during the free fltKht till it comes to n ntand still.
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b

Let S2 be the sector length moved by the point after the

fuel has completely burnt. Then by the law of transformation of the

Kinetic energy of the point with a constant mass, we write

2
mv 1
T t= - =gs 2.

This gives

The total distance traversed by the point is found from (3.9) and

(_.10), i.e.,

2 _ + _ (q-l) _ ÷ vo (3.11)I . S1÷;_ 2 . (q-l) + vo _ 2g o_

L ,

The investigation of external case is of special interest. For this

we substitute the value of q i_ ter=s of_l_from the for=ula

and consider the distance as the function of the argument X.

Equation (3-9) will then be replaced by

S I • + (_ vr - g)

e

Differentiating the above w.r.t _and equating i_ to sero we get

• ro +/_ v 2

Xt cu be seen that thle value of _ .axioises the funotloa S 1
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I

(2Vo÷_Vr) 2
81 max = 8g

substituting the value of q in terms slain (3,11) it become8

I,

i2 %_ .

Sioilsrly the maximum altitude of the rocket will be worked out for

tke value of as obtained from the equation

iees I aS,"_.._._-_.c_

2

,, In this case

. 1.._.(v° + vr? )2Snax 2g .II.

.( ."

Since the time of active cosbusticn'dR given by t I

achieving 3ass in the uniform field of the graeity disregarding

resLstance the supply of the fuel should be burn_ as quickly As

possLble.

MOTION OF SPHERICAL DROP 0N EVAPORATION OR

COND_SATXON OF THE VAPOR_ 0N ITS SUR_,'ACE:.

Formulation of Problems:

Studying the notion of the spherical shaped water drop in th_

stationary ataosphorst saturates with water vapors S_nmerfield _3_

|

suggests to proceed from the assumption that on condensation the

increase in the mass of the drop is prol_rti0nal to the a__F_a of its

• i ..........
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surface. However, this assumption is Justified only in the case

of evaporation under vacuum.

The low speed motions in a gaseous medium like the rate of

condensation and evapora_ion is determined by the Maxwell'n law

dm-- = ekr (4.1)
dt

where m denotes the mass of the drop • = _ 1 ( ÷ Ve si_ is taken for

condensation, and - ve sign for evaporation); k - a positive constant

depending on the diffusion coefficient, differenle in concentration

of vapor on the surface of the drop and the distance from it, and r

is the radius of the drop.

In the range of 100 to 1000 of de, the experiments of

Freshinga C10_ and hie successors _0_ demonstrated that the rate of

con6ensation and evaporation is given by the formula

dm

d-_' = epr 1 rv, (4.2)

where p = constant 70, v - velocity of the drop . Formula

(4.2) is coproboratedby the _heory of the boundary layer_103_.

Below is given the discussion of two problems:

In section 2 |lOW and a conparatively rapid fall of a drop in

motionless gaseous mediuR is discussed when condensation or evaporation

of the _apors occurs on _ts surface. In section 3 the horizontal

motion of the liquid fuel drop in respect of the gas flow is discussed.

Since the particles cf the vapor on condenmation of (after evaporation)

-1
, j



have zero velocity, the reactive force R, arising from the change of

da-
the naso equals _ v.

1 The Problem of Free and Slow Fall of a _pherical Drop_l_
on whose Surface Evaporation or Condensation Occur_s "" "

For slow fa_3in_ of the drop the medium resistance is taken

to be -_?T r 2 _, where O6 = con6t. _ O. Projecting on the vertical

axis x, directed downwards, t:,e Meshersky equation in the present case

yields.

mx- sag - (_3_ }.2 + ekr ) x. (_.3)

W• have

• : g i'_ (4._)

Where _P ie the density. Differentiating (4.4) in respect of time
e

and equating the resulting derivative to (4.1), we get

Using (4.47 and (4.5), equation (4.3) can he written as

x + +, .,. x ,,, 8- (4.6')
'/' ro+v 't r + v't

If we disregard the mediua reeietance_ i.e., _,.,_'- O,_then integrating

the equation (4.67 and using (4.5), we get

+
lntegratin3 the linear equation (4.6) when A'# O, we get

(£I,.?)

_qI_¸+ '+'+''_ .........



÷vt---÷
q

(4.8)

q ro * v_ q3 (r_ ÷_t) 4 2 2
q (to÷ _t)

Conetant of the solution (4.8) is gi_ven b7

(_.9)

We now consider the caee of little evaporation and little

condeneation and restrict the solution (4.8) to those terms which

contain the parueter V in the first order. Formula (_.9) then

yields

t

x _ 3_ - x ÷ . 2r o " 3_

In the ease under consideration formula (_._) beeouee

1 Vt

m r 0 + _ ro

therefore, ne_leetin_ the exponential factors, w_ _et

x • 3_ " (4.11)

+

(_.qo)

L
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Formula (_._I) gives the critical (limitin_) velocity

of the drop, acquired by it after a prolonged interval of time. It

further shows that on condensation the critical (limiting) velocity

161g_" and on evaporation it inoreases by the annedieiniekes by

8JIount.

By integrating equation (4.7) we get

Formula (4.12) expresses tke law of falling of a drop when the medium

resistance ia disregarded.

WhenA # 0 integration of equation (4.6) yield8

-qr q ( - qr ÷
x - C 2 - \, _- qE i

(_.'t3)

in which the constant C 2 is given by

+ "_" q3 q ro /
(_._)

In equati_on (I_.I_), the radius r of thedrop is obtained from the

equation (go5) and in the fornulae (_01_) anl (g.l_), Ei(x) den.ten

tile integral exponential function _ _ d 7.
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In case of insufficient eondenmation or evaporation, integrating

the equation (4,10), we get

x xo _ g o -e _ [ ro °tm ÷ - X /11 ÷ , ÷

For larEe intervals of time, the exponential factors in the formula

(4.1_) may be neglected. Thus we get

4gr ° 4g r ° 4S ro t

X 0 ....x= +3 3 "Xo * 3 +

,_,L.. ta 8 t
'*' ,_ 1;'F"" -T- ÷o 2? 3

(4.16)

We note that the derivative of (4.16) agrees with foraula (4.11).

_. Problem of Free Rapid fall of the Spherical drop.gn.

whose Surf&oe Eyaporation or Condensation Occurs L?I)

When the drop falls rapidl_ we take the medium resistance to be

_ r 2 v 2, Pro_ecting on the vertical axis x and applying formula (4.2)

we get

• -K_r 2

(4._7)

" L "
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Differentiating the equation (_._) and equating it to the left

hand lids of equation (_.2), we will have

We will examine the ease when P £8 e_all and find out the

solutions of the equations (_o17) and (_018) in 8erie8,_= _ • To make

it simple we allow the solution to retain only those tern8 which

contain the parameter _ of the firnt ordero Hence the 8olution is

obtained i_ _he fo_, r -/'.p_ , _ - • .p • In order to detersin. =ere
terse we get the equations

From here it follows that

v - g -',_ -_v P', p- 0

Vo÷Vltk J_.
v,1 _fgro_

- rot V- V1 t V1 == 2
vl.Vot h ._. r]/_

v I

(_.19)

The variables _and _ _re deterained from the zero initial features

(conditions) of the followin6 equations

(_.zo)

Equatio| (_.ZO) ylelde the values of _ and _ in squares.

Formula (_.19) show= that when the motion continues for a

suffi©ieatly long timq_hequantity v approximates to v 1. Since the
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bodies falling in a resisting medium the critical velocities are

attained fairly rapidly, we take that beginning from a certain

moment of time v equals Vl.

_. c .',_ __.._ , _. _._l + 2 { ro -T'-r_- 3 ( r
O O O

the integrating equation (4.20), we have

/ 3 v I .

_t

Foz_aula (4.22) and the expression r = ro+/U _ yields

x=2 ql _._ _ ... ---2I,o t
" 12_

(_.22)

The first part of the above result represents the critical velocit_

of the drop of radius r, The second part of the result indicates

that the critical velocity decreases on condensation and increases

on evaporation. If we discard the exponential factor, the change in

critical velocity is

i ..........

_. Change in the Radius of a Spherical Drop on a Hori=ontB.l
Flight:

I i| I i

, Working. on the processes of combustion two things are important

to knew= the motion of the lilLuid fuel drop in respect of a horimontal

gas flow and the change inthe radius of the drop as a result of

evaporation: Ia practical problems the actual values of the initial

_.--... -. _ L _'
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velocity r of the coefficient of the Kineneatic viscoai_F/u are

such that the Roonald numbers do not exceed 1000o

In the works of Putnun (81) a formula for determining _he

resistance coefficient CD of the spherical drop when Re _IOOO

has been suggested as

2

I
CD Re - I + _ Re _ (4.23)

Accerding to Putium formula (4._) gives good results.

We will use formula (4.2) for the computation of the change

of nasa. As has been described in section 1 af the present paragraph

the formula holds for Re ranging from 1OO to 1OOO. In the prezent

case the constant • in feraula (4.2) is equal to - 1, p is some

positive constant and mass is determined by formula (4.4) in which

L denotes the density and r is the radius of the drop. Setting the

pro_ection of the differential equation (el motion) in the

direction ef the horizontal motion of the drel_ we proceed from

d= ;.
the Meshersky equation (2.5) in which reactive force R = _

Take
1

'Z'= (ae bt - • :_ )T_ , (4.2A1.)

.. ;_r 2 (4.25)

ghere t - time! Re - Reonald number at the beginning of the notion;

rH - initial radius of the drop. Initial value of T'when t = O is

u_ity.

L
i
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The fernula for the velocity of the drop obtained on the basis

of (4,23) by puttin$ p = 0 il _ho result (4.2) lay be transfsmed

aS

|

v --vE '_ -6 44.26)

where v H - initial velocity of the drop9
i

Retaining the terms of first order snal_oss (inf_tenmial)

in respect of the coefficient p, we find the shrinkage (decrement)

in the radius of the drop.

In fernula (4.2) put

the_ it fsllsws

r = rH ÷ p_ (4.2?)

(4.28)

j

..........

i

..... I

Proceeding to the independent variable T . (i.e. differentia-

tin I w.r.t, ) and using equations (4,2_), (_.26) and (4,28), we get

vhere

•

£ntoIrating equation (4.29) and taking the initial values

(4._)
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_--1" L In ' +

c -_ " 2 arctg c - l j

(#.3_)
I

Derivative with respect to 1_ of the function

I
le

¢ ._+_2

i

iS greater %han zero forty'and less than zero for_>_."

Therefore, the first term in the square bracket of (4.31), representing

the difference _ (_) -_(I), is positive and increasing for

I_T_ l_, and when _C _ _ it decreases and tends to become

negative for sufficiently large values of _ .

The second term in _he square bracket is greater than zero

and increases for T lying between 1 and _-_. At a point _ =_

this term suffers discontinuity of the first kind and then again

increases.

As regards the physical meaning, _ must be continuous and

monotonic decreasing. In order to preserve the continuity and the

monotonocit_ of the variable _ after passin_ through the point of

discontinuity_" =_-_we would add 2 for values _>

Making _--_c_and using equation (4.2_), the shrinkage

(decrement) Z_ _ in the radius of the drop till it stops can be

expressed a8

!
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J

I

!

(_.32)
- 2 arctg /

Using (4.31) and with the help of the Meaher.ky equation of a

point having a variable mass for the spherical drop, we may obtain the

formula in the form of quadrature giving the extension in a horizontal

distance as a result of evaporation.

5. Some Questions of Mechanics of a Point Having Variable

Mass as Examined by Meshersk_:

The following questions were put forth. Finding the

reaction of the ideal (couplings) constraint_, converse problems of

the dynamics of a point having variable mass, motion of a point

having variable mass under the action of central forces and nature

of dependence of varying mass in the velocity.

The accuracy of the resultsof Meshersky _3,55_ is shown.

1. Reaction of the Ideal Constraints Experienced by

the point Whose Mass ChanEes Without Impact:

When the velocities of the varying mass u I and u 2 are equal to the

velocity v of the point having variable mass, the point does not

experience impacts and the impulsive forces will than he zero. The

Meshereky equation (2.5) becomes

m

1•

I

?

Acoordingly, in terms of projections, we find

= Xl' Y = _1' _ = Zl) (5.2) 1
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whore the projections of the force are carried to the unit mass.

1 1
X1 --1X, Y =- Y, Z 1 . -- Z= m 1 m m

Equation (5.1) and (5.2) show that the free point hsving a

variable mass which does not experience impact during the variation of

the mass, moves under the action of the given force in the

same manner as the free point of constant unit mass moves under

the action of the force calculated on unit mass and under the same

initial conditions.

Let the motion of the point having variable mass be subjected

to a constraint of smooth surface.

( x, y-, z, t ) = 0 (5-3)

ComblnlnE with the active forces the reaction of the surface

_grsd_ ,

leads us to the case of a free point ha_ing a variable mass.

Therefore, using (5.1) and (5.2) we get

°

l
T ....

_1 • II1" 1;_' '

m dr'" •

then we have

(5.1+)

(5.5)
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Where _1 is determined from the constraint equation (5.3)

If the mass of the point depends on the distance, th_n we may also

take into account the equation

ds ._ x2 y2dt m ÷ ÷ z2. (5.6)

From (5.5) we conclude that the motio_6f constraint point

having variable mass can be construed as the motion of point having

oonstant unit mass.

i

i

I

!

I

I
I

2e Reaction of Ideal Constraints Experienced by the Point,

W,h,o_e change,, of Mass is &ccom_anied by an _m_act:

Let the motion of a point having a variable mass and which

experiences impacts during the change in its mass be subjected to

an _deal constraint. Since the surface (5.3) is supposed to be

smoo_h, its reaction_ grad acts in the direction of the normal

and vector equation (2.5) can be expressed as

m_= dt " (5.7)

Denoting the projections of U 1 and U 2 on the axis of the

coordinate system bY,c1,/1, _1 and JC2, _2' _, we get

" _x '

:my=Y+

mZ= Z÷

(5.8)
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(5.3) •

Multip!_r ,_ "_11 be determined from the constraint equation

Diff_r_at_._:_ (5.3) we hays:

•x + ._ + 'z + %-_ = e,
(5.9)

(5.10) .....................

puttihg in (5.qO) x, _, z as obtained from (5.8) and using (5-9),

we get:

In(5.11)

(5.q2)

I
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Assume

_'1 =_'2 = X, p1 =/2 =y'

then as a result of (5.9) we get

and by (5.11)

_,/i, fi _ : o (i- I, 2)

p A

Therefore, _ is called the reaction multiplier (factor) brought

into play by the motion of the point and the action of the force F.

Brom here we must conclude that the component reaction

(5._4)

is caused by the impact process of the change of mass and it will be

referred to as impact component reaction. If the changing masses

move iu the surface (5.3), then

(_i,pi,/i } _-o (i= 1, 2)

and the impact component reaction does not arise. When only the

addition or ejection of particles gives rise to the exclusion of the

other, the impact component reaction can be expressed by

I1_-i ii.__ -J

i
L ....
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Let the point move on the curve of the intersection of the

two surface_.

_I (x, y, z, t) : 0,_2 (xtyt z_ t) = O.

In this case, the reaction of the curve is equal to the Eeometrical sum

of the reaction8 of the surfaces

grad ÷ gr,,d

whereas/1,_ 2 can be determined by the method outlined above.

the surfaces are orthogonal to each other, _hen_l andS2 are

expressed by the equation (5.11).

If

I

3. _onverse Problems of Dybamics of a Point Having

Variable Mass.
, i Jm , , , ,,

I.V. Mrdhrtdky in hid msdyrt's dissertation _53_' (1897)

discusses some converse problems of the mechanics of a variable

mass, in which it is required to find out the law of change of

mass of a point when its motion under given forces is known. We

examine another problem connected with it,

Let the velocltie_ of the changing masses be equal tO the

velocitM of the point and let the point describe a plane curve

7 =j_(x) (_.15 _

under the influence of the medium resistance and the other forces t

resultan_ of which calculated for a unit ma_s, depends only on the

:_.
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Denote the projections of the resultant by X and Y and let W denote

the medium resistance, calculated per unit mass divided by the

velocity of the point. Then equation (5.2) becomes

(5.16)

As the equation of the curve is y --/(x), differentiating w.r.t.

we have

whore /'is the derivative of _ w.r.t.x.

Therefore (5.16) now becomes

Since

y= fX,

-_:x +_'

(5.17)

we find

yield

2
X =

x = (X - X), • = + I.

Differentiatins (5.18) w.r.t.

• J /"
t

w.-_- _ Y-/,x
G

(5.18)

(5._9)

(5._6), (5._?) ana (5.19)

(5.20)

m

i



---F- 7

-I+9o

Where

_ -fi V fx#-j . L c,-_ ._G

in which Xx, Xy, Yx' Yy' aro the correspondinF, partial derivatives

of X and Y,

point as

Equation (5.17) and (5.19) provide tho velocity of the

F .........

v ,---liJ_-r._(I + #,.2_ ( y _ "_x) (._.....)

thereforo, the medium resistance is given by

When a heavy poi_it having w_riable ma:;s describes the curve (5.15)

in the vertic,_l plane, we have

X = O, Y = g,
,/

G=-_g

J

therefore,

W =e_ ,
v 2 ?"2

mass'of the point must be equal to the real resistance divided by

Wy,,

Now suppose the velociti'ea of the changing masses are equalto

fern, then the motion of the point in the plane in de_._cribed by the

equations "

t

L
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dm '
rex- mX - (w + _) xt

m) = mY - (W + dt Y'

where W is the medium resistance divided by the velocity of the

point.

(5.24)

Taking

I J dm

w--(wm

we transform the equations (5.24) to the form (5.16) and the

law of chan!_e of mass along the trajectory of the motion performed

under the influence of given forces is thus formulated.

Suppose only the proce:_ses of addition o? ejection of

particles to the exclusion of others takes places and the

velocity of the, changing mass is directed towards the velocity

of the point. Then the vector equation (2.6) on projections on the

axes OX and OY will become_

v. dm
m_ - mX - Wx +_ (k - i) x,

mY-w#+ (k- i) y.

V

where W
v

is the value of the resistance and K is the ratio of the velo-

city of the changing mass and the velocity of the point is taken

positive or negative according to velocities in similar or opposite

direction

i
1
.!

Set

W =--Im I _ " (k " I) dtd-_'m1 '

!
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then the equation (5.25) takes the form (5.16). Therefore, in this

caue also, la_..,of change of mass is again formulated.

4. Motion of a Point flaying Variable Mass when it is

Performed Under the Influence of Gravity and Central

_OrCe_ : ......

The equations of motion of a heavy point having varlable_

mass are ex_re_sed as

t' 2 ..j

dm 2

V '

C5.26)

!Im m

Z V "

where W Is the medium resistance calculate_ _er unit mass, and

axis cz is directed vertically upwards.

Let only addition or ejection of particles to the exclusion

of the other take place with constant average velocity u r (both

in magnitude and _irection) and having projections a_ b, c. We take

the initial position of the point a_ the origin and vortical plane as

the zx plane, in Lich Ur is confined. Then b = o and the

equation (5.26) de_cribi:;g the motion of heavy _oint in vacuum caz

be expressed as

= - a, n O, z _ -g -dt c, (5.27)
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" l°gm°m

We may write five integrals of the system (5.27) as

X = - a I_+ Xot y -- _rOt Z = - C ,i'_. gt + Zot
i"

• I
y = yo t, ex - az = _ agt 2 + (cx ° - az o) t.

Here Xo, Yo' ZO represent the projections of the initial poi_t

of the velocity.

I.¥. Meshersky _53) has discussed the above integrals and

c(_nsidered a few concrete examples re_arding the motion of n heavy

point having a variable mass.

Let us investigate ho_ the heavy point having a variable mass

would move under the action of a central foTce. We represent the

central force by F taken with plus or minu:_ sign; whether it is a

repulsive or attractive force. Then Meshersky equation (2.5) can be

written as

m_=Fr+dt - (5.29)

Case I:

impact {mass changes uniformly) i.e., u I = u2=vl,

therefore, equation (5.29) becomes

Suppose the process of change of mass takes place without

" "

!

i
....... t
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In this case, if the force is proportional to the mass of

the point, the change of the mass does not influence the

motion. The problem concerning the motion of the point is

resolved, if the mass of the point and the force are functions

of distance of the p_int from the center of the force.

Case II:

Velocities of the changing masses are equalto zero

_I - u2 " 0"

Equation (5.29) is thon expressed as

dv _ dm
m_=FF'_V_ (5.31)

Equation (5.31) admits that there are integrals and

consequently the point moves in a plane through the center of

the force. In this plane doublG sectorial velocity of the point

is equal to

: , c -- oon t.

If the mass of the point and the force depend only upon the

distance between the point and the center of the force, the

problem is resolved.

Case ,III:

Velocities of the changing masses are directed in the

same direction as the velocity of _he point. ....................................

i
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111 = _V I 112 = _V

Equationof the motion then becomes:

Since by virtue of (5.32)

a_. ( k: x v ) I dml ama - -
dt = _ ( _'_"- d---_ _/" dd--t_) ( r x v ),

(5.3a)

(5.33)

the following integrals arise

yz- zy = clf,

zx - xz = c2f,

xy - yx = c3f ,

where

f & (yam I - _dm 2)
f = A • m

m

Therefore, the point moves in the plane

f

!
elX +e2y + m3z = 0
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Double sectorial velocity is equal to

2_ f C2 C3r - + ÷ •

Let us assume that only ejection oraddition of the particles

to the exclusion of the others takes place• In order tn fix the

ideas, suppose that only ejection of the particles occurs. Then

J
A

If _ is constant or a function of m then f can be finitely

calculated. If the, mass of the point _ the' force can be expressed

as functions of the distance, then also the theorem is provided.

In the _ht of the above discussion, we may investigate the

motion of the comet as it approaches its periger. Assuming th_) the

mass of the comet decreases and many be expressed as a function of_im_mea

between the comet and the sun. Then the equation of the motion is

integrated if we suppose that the velocity nf the inertial center of

the ejected particles is either equal to the same direction in which

_he comet is moving. We further suppoee that the ratio of these

velocities is either a constant or a function of the distance between

the come_ and the sun.

Case IV_
i|

Tae vtlocities of the changing masses are directed in a

straight line Joining the point and the center of the force.
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i

i

Equation (2.5) is transformed as:

dt = _ + ( _ _'" dt C5.3_)

Consequently three area integrals will arise; the point will move

in a plane passing through the center of the force; and the sectorial

• velocity of the point in this plane is inversel_roportional to

its mass.

Case V_

The projections of the reactive force, taken per unit mass,

are explicit functions _f t_me.

_'L dt ('#1" x) -_._(,,x':_- x.

.q

q
.i

!

(_- z)- ( "2 " z) = .

Assuming that the central force is proportional to the mass of the

poiDt and can be expressed as a certain function of the distance

F - m _ (r),

then the equations of motion are obtained as

d
L

t
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. -_y(r) Xr + f!(t)'

.e

Y =_I (r) _r ÷ f2 (t)' (5.35)

..

_z ÷ F3(t )=_I"(r} r

Suppose the functions _1(t), _2(t), _3(t) are such that

_ii_t) = fi(t) (i=I,2,3), then the equations (5.35) consider_.d with

= _I _'2 (t) z (f3(t)x =£ ÷ _l(t), y + , =_+

explains the motion of the point of constant mass in vacuum under

the action of the central force whose center moves in a pre-determined

manner,

_upppse only the addition or ejection of particles to the

exnlusion of the other takes place, the geometrical difference

of the velocities of the inertial center of the changing masses and

the point has a fixed direction and setting on parallel to it

Ur = U - V, then

1 dm f2 O, f3 0fl = _ _Ur' = =

'_ cJ

f

._ ,4,:-.._,-_ . ,_._ ......

In such a case,the central force operates according to Newton's law

51 Limitations on the Dependence of the Changing Masses on the

Velocity: [_'_ .............

Let us study the possible functional relationship between the

changing masses m 1 and m2 and the projections of the velocity x,y,z.

Suppose the changing masses are expressed by _unctions

L
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ml = fl

m2 = f2

(t, x, y, z, S, x, y, z ),

(t, x, y, z, _, x, y, z ).

45.36)

Whlr_ S is the path travelled by the point. -Then differentiating

in respect of time, we have

dml _fl _fl _fl "_fl _fl " "_fl _fl _fl

(5.37)

dm2 _f2 _f2 Bf2 _f2 _f2 8f2 9f2 Bf2 "'

m_ = x +_- (_cI - x) - (_2 - x )

dm I dm 2 ,

m_ = Y + _V- (#_I" y } " dT (#2 - :,), (5.38)

dm I dm 2

Putting in (5.37) the values of x, y, z as obtained from

(_,38), we get a linear and non-kemogeneous system consisting of the

dm I dm 2

two equations in terms of _- , d"-_ the determinant of this system_is

$fl

_fl 8fl _fl

iL ..... -J
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dm I dm 2

Substituting in (5.38) values of _E" and -_E obtained from

(5,37) we get a system of three linear equations in terms of x,y,;

whose de termlnant_s

_fl _f2

_f2

- E_-(_ - ;,)÷_v-( _- -_ - _-( __ ..

_df I _Of 2

m-_-(_1 ;),_(f2- =)

2

A 2 is a pelynomiae of the third degree in an

A2(=) = m ] + Am 2 + Bm + C.
(_.39)

L
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p.

Set C = Z_2 (0) , therefore, co_i_icient C is equal to the

determinant ........................................................................................

el2 "

It is easily seen that C = 0

Moreover_

m=O

Censequently,.coe_icient B is .qual to the sum o_ the three

dia_onal determinants of the second order, ©btained from the

matrix of the determinant _ 2(0). It may be written in the form
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D (tl, f2)

• D (fl, f2)

D (f1' f2 )

D (x, y) /2 " z

(5._o)

elements in the second column are functional determinants,

computed from the functions fl and fl in respect of the indicated

projections of the velocity.

We now determine A and get
i

I a2_2 (m)
Az_

2 dm2
m=O

_fl _fl ' '_fl
A. "_"_('X_" £)" "_(,__"Y)"_ ( /_" _) ÷

*"s'_(_2-£)÷'_"_-(/_2"y)* _:c/2

By similar considerations, we will find that

(5.41)

2
= m + Am + B (5.42)AI

therefore

If we exclude the specil, n_se from consideration when the linear

eqvations in _-_ and_-r the equations in terms of'x,'_,z are

homoseneous, then the functions (5,36) determine the change of the

mass only if/_i ?n_6h.

!
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Suppose the velocities ef the changing masses are equal

to zero, then

_'1 :Jc/2 : O, /1 :/2 = O, _/1 : )/2 =0;

Hence B = 0 and

__ _(fl " f2 ) _(fq'f2 ) _(fl-f2 ) -_I = m m + _ _" x + _y "Y + _z" -- _ "

Since m = mo+Xl-f2, the above result, treating _1 to be zero,

is equivalent _o

_m _m " "am (5.44)

(5.44) shows that m is a homogeneous function of the velocities

(negative) and it is of the first o_der. Therefore, if the/k,

expression for the mass m 5dentically satisfies the equation

f (rex,myo mz, x, y, z, s, t) = 0

then j_ is equal to zero. in case of the rectilinear motion we

hzve

t

• _. ,, w - w._ ....

f (mx, x, t) = 0

1
m - _ f(x, t),

where f (x,t) - which is a function of x and t.
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I •

I • ,-'I_ +_._:,.nge of the }fine,pal "J,:ctor of i.,omontum of a

_tem havin_3;" V,'ri:-lJ!e l.a:-_: ..__......

,,e will con_i_]_z' :_ ":y;-tem of _o'nt_ h::,I+..L,'_v+ricb.l.e nar.,:'_,:+

which cons,sty of finite or infinite nui_ber nf "ointz. :_'qu_tion

(1.2) in Ch;-gt,_r-I c}_-:r:_ctr.,ri;::e:;the !'_otion of e_ ch z_;_teri:,l point.

2her<;fore, the motion of j the -,oint h-ring ,._.v_,rinble xw :-,_;is

.%_
m,+--,_t.... - _+_+ 7'!++ _,+, (1.1) .....

,_here _ 4enot+:r, the component of all ._xt_.rnal forc+s acting on J,

the point. _"j - com,:on nt of all intorn:,l force:_ e::,_:rtud on the .?oint

from the dir,_'tion of other ?_oint:; of the inve_tigated mechr:nical

system, _j - r_: ctive force oxen'ted on j, the _L,oint.

By (Io3) of Chapter I the r motive force tony be expre aed

.qS

k._+

(I .2) .....

=
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where the index k signifies all the particles moving in the

material point, and_] denotes the average accelerations of

these particles.

The coriliso force is found from the equation (1.4) in

Chapter-I.

-- - 2 _,j x mkj urkj (1.3)

k

The summation in (I. 3) is taken over all the particles moving in J,

t_:e point, W. - is the angular velocity of the auxiliary system of the3

coordinates whose origin is in J, the point, urkj - the average

_Iocitiez of the particles.

Impulsive force for J, the material point by (1.7) in

Chapter-I is

=" dt uij (1.b,)

J

where the summation is taken over all the directions of the impulsive

change in the velocity of particles in J, the point! _/'_- rate of

flow of particle in _-dir,,ctions;_- impulsive change in the average

velocity of the particles. The i:,_pulsive force can be expressed as

a surface integral over the solid angle round J, the point, as shown

in Chapter-l.
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The vector (quantity)

is called the momentum of J, the point having a variable mass.

From the equation (1.1) we obtain the law of change of momentum of

point in the form of

(1.6)

o

dtd_"_rlmj, t, r j(t), vj(t_

is partial derivative in respect of time of the function _in

which mj and t are independent variables. From the instant of

d"
time when the mass cases to change, _ is converted into the_tal

d srivative in respect of time.

A.I. Puree C453 was the first to use the derivative in

respect of time market with superscript star for the consolidated

masses. Equation (1.6) may be rewritten as :

\
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where d*Qj - is partial differential of the momentum of J, the point

computed for the consolidated, masses. A point having a variable

mass is said to be consolidated at time t, if the mass ceases

to change frnm this instant, although the terminology of "point"

suggested by F.R. Gantuseder and L.M. Jevin C11,1_ for the

rocket is a recognised one. Therefore, the law of change of

momentum of point having a variable mass _ay be reformulated in the

following way.

Elementary increment in the momentum of the consolidated

point having a variable mass is equal to the geometrical sum of the

moments of all forces acting on the point.

Writing equation (1.6) for all points of the system and

adding, we obtain:

where F = F - principal vector of all external forces

J

acting on the system; R = Rj - principal vector of reactive forces.

J

We have

R - - jwkj + ÷
k,_

(I.9)

The su_mationin the first member onright side of (1.9) is takenover

all the particles moving in investigated points; and
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mr:- 2 x mkjukj
k,J

--.= principal_ector of the Coriliso forces,

(q._o)

Finally,

_j
J J

(1.11)

- principal vector of all the i:ipulsive forces. In this the

summation is taken over all the directions of the impulsive change in

the velocity of particles (index i) in the entire investigated

mechanical system (index J).

In case of the system of points there is a continuous medium

then the principal vector of the irlpulsive forces_may be e::pressed

as the fifth order of the integral

(_

de" = sine d_ ddr ' , d'&'= dxdydz,

(1._2)

where ) _ is integrated over the solid angle round the

geomatz'ical point of the medium with coordination xtYgZ;

integral over the medium: Function (xty,z; _ ) is specific

value of

" dt uij

t

,-v
u

__A
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Equation (1.8) states the law of change of the principal

vector of mom_nta_ for the system of points having a variable mass.

The law can be written as

a.Q --(F ÷ _ ) dt (1.13)

If the process of change of mass completely stops at time t,

the s,,stem is then said to be consolidated at this time.

The .,lementsry increment ir the principal vector of the momentum of

the consolidated system of the points is equal to the sum of moments

of the _xternal forces and the forces of reaction.

2. Equation of Motion of the Inertial center of a System

of Points H,_vin_ V,_riable Masses:

_e will investigate how the center of the inertial of the

The radius vector of the inertial center is givensystem moves.

.by

mr
c = Z-_ mjr j,

J

(I.I#)

where

is the " total mass o_' the system of points; rj- radium vector of

J, point in respect of the origin, taken as rc,
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(I._4)

Taking a fixed point as the origin,find dd--t_from equation

d s

- Q (1.15)m _ r c

uifferentiating once more and using(1.18), we obtain

2 _ _ --

_t 2 =F+Rm r C
(1.16)

which provides the vector equation of the inertial center of

the system of points having a variable mass.

d2"

NOw we will determine the relationship between--_t2 rc

and the acceleration of the inertial center, w c. The radius vector

of the inertia] center in respect of a fixed origin is given by

=-" m r e
rc m Z__, JS

J

(._/17)

Differentiating it in respect of time, we obtain

- " - /___L-J;J"
_.__...... m

J J :i

Since r C m VC,

center and

v c - being the velocity of the inertial

1. U • r cm J
S
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mm-_ _ _2 --'nrc ! _ mjrc"m _/_-_- mjrj = - = -

J J

_'c--_Trod"- ÷ !m _-' mj (_j- _ ). (_._B)

d • -

The quantity _ rc represents the velocity of the inertial

center of the consolidated system of points having a variable mass.

Therefore, equation (1.18) provides the relationship between the

the actual velocit___f the inertial center of the system of point

and the velocity of the inertial center of the consolidated system.

Differentiating (1.18) in respect of time, we obtair

- _ _' _ _ _7"m r ___
-_ V = -- _ mjrj + _ _ J J mWC C m - mj

J J J

_ _j :.._:_÷ _j (rj-r c ) +l / ( rjm ,_ c

J J

m ,i

As the follewing equality holds

.-_._ -j_s-_ _ ,j(;j-_o)
"2 m =

S

m --d )+ 2 - - --mr
"'-2 dt c m c?

in
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d2" 1 - 2

dt 2 " . .
J J

(I.19)

which establishes _he relationship between w and
C

In case of the continuous medium the results (1.18) and (1.19) will

be expressed as

d" 1 - -c)r _P- +- ( r- ----- dC (I 20)vc _ rc m _ t ' "

and

Wc = dt _- m
)

--- + 2(v -V c)
_tjBt 2

d_- (1.2_)

Where p (x,y,z,t) - is the density function oi' the medium;

the triple integrals will be taken over the medium. In case of the

surface of the linear medium the results will involve double or

single integrals.

From equation (1.19) we see th:_t generally

d2"

wc _ _ rc.

J

Therefore, equation (1.1_) diffJrs from the equation (1.2) ( of Chapter-

l

I) of motion of point having a variable mass. Thus, in mechanics

of the variable masses, inertial center ef the system of points

does net move in the same way as the material point whose mass is

11
equal to the mass of all the material points entering into the

t

• L
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investigated system and on which a ferce equal to the

geometrical sum ef all ferces acting on the points of the

system is exerted.

3. Example:

i

Fig.4 -_

Pxc. 4

We will consider an example showin E application of the

inertial center motion.

A trolley of weight P_ (Fig.4) moves on a rough plane.

A lead weighing P2 has a relative (average) acceleration WqC.

The lead is, en beth Fig.4 sides, fastened with a heavy flexible

chain whose weight per unit length is _ . On the left, the chain
b

passes Qver a block A and rests on the trolley. On the right,

the chain goes over a block B them passing through a smomth vertical

tube rest onthe ground. Neglecting the rolling function of the

m_ss of the blocks and the friction in axel (shafts), and

supoosing the AB to be ideal, find the acceleration ef the
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trolley if the weight of claim on the trolley at a given

moment of time is equal to P3" The distance AB is d and th_ width

of load is e.

II_ the present case, the external forces and the reactive

forces will be actinc vertically a::d, therefore, projecting

inertial center equation (_.16) on x, axis we obtain

therefore, it follow_ that

_>-m_ 0

or.more precisely

therefore, the acceleration of the trolley is

' '' W

"i _I ÷ P2 " _3

\
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2. LAW OIL,'CHANGg OF KINETIC MOMENT 0_' A SYSTEm4

0_' POINTS HAvIrIG V_RIABLE MASSES:

I. Change Qf the Kinetic moment of a System of _oint

5avinz Variable_Ma.sses:

Multiply vectorially equation (1.1) by the radius vector of

j, th point with respect to a fixed origin _j and adding such

equation for all material points of the system, we have

J

(2.q)

where

z,= z'..._rj xF i
J

- principal moment of the external forces actin_ on points

of the system

M = -/___r x mw r + H + K (2.2)

principal moment of _eactive _orces; in which

J J

= principal moment ef Coriliso principal moment of

forces. _-impulsive forces

Ig the system of p@ints is a continuous medium q the L,
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Land _ x mw r may be expressed as volume integrals. The

principal moment of impulsive forces, in this case, would be

a fifth order integral

K -- r x _(x, y, z; @, Q )d_Cdt _ ,

d_ = sin @ d@ d_, dT= dxdydz.

(2.3)

I_¢ is surface integral over the solid angle found the' ' ISf
geometrical point of the medium with coordinates (x,y,z);

is volume integral considering properties of the partial

deriw_tives and using (2.1), we obtain

where

_t i - t _ _-_ c2.4>

-I = rj X mjvj

J

(2.5)

- Kinet&c moment of the system ef points having a variable

mass, calculated in respect of a fixed point.

(2.4) states the law of change of the Kinetic moment.

The derivative with respect to time of the Kinetic moment with

respect to a fixed point of consolidated system is equal_ the

sum ef the principal moment, in respect of a fixed point of the

ex%ernal and the reaction forces.

We will now develop the law of change ef the kinetic

\
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moment ef the system of points having a variable mass in respect

ef the center of mass of the system. We have

J J

where 1
C is the kinetic moment of the system in respect ef the

ceater ef inertia

where

d" _.-- - -- - d" -
-- ,/ r c X m V n r c x Q.

J

By virtue of (1.8) and (2.4), we have

C1,*
"_-- 1G -- Lc _ Mc.

Lc = (rj - rc) x Fj, M c = (rj - rc) x Rj

J S

(2.6)

are the principal momer_ts of the external and reaction forc_ in

respect of tle inertial center of the system of points having a

variable ma_s.

therefere

J

(2.7)
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_" _-_-'_ - "" _'j d* -1 c : _L.... ("Yj - r c) x mj ( "Z'_ r c ). (2.8)

@ Example Showing a Roaring Winch with Unwounding and

Woundin_ Chains. ,

!

Ue will consider a practical applic_.tion which uses equation

(2.6). An absolutely flexible chain, whose vmight per unit length is

i_I' is unwound from the barrel of the radius r.i. On the shaft, whose

radius is r2, are wound two absolutely flexible-chains which rest

on the ground. The weight per unit length of each chain is B_

The shaft has a constant torque L I.

PJzc.

Fig.5

Neglecting the bearing friction and transverse dimension_ of

chain, we determine the angular velocity of the rotation of the

shaft, if its moment of inertia in respect of rotation axis is

and initially the shaft is at rest. Height of rotation axis
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is _Z and initially the shaft is at rest. Height of rotation axis

from the ground is _t . Initially the chain of length 1 is wound

on the barrel, and the chains, each of 12 length, are wound on the

shaft on both the sides of the barrel.

Projecting equation (2.6) on z -axis, we obtain

d $

_-_Iz = Lz + _Iz. (2.9)

Where is the angle of rotatlonof the shaft

II z _I r2 (h + 11 ) + L 2 + L 3+-_- - rl_

The projection of the principal moment of external forces

on th_ axis _f Z gives

L2 --_I ÷ h ( )._1rl - _.1"2r2) + L2 , L_

Where L 2 - moment of the weight of chain wound on the barrel in

respect of z- axis; L 3 - moment of the weight of chain wound on the shaft

in respect of z-axis. Assuming that the chain is very %hin ) we have

L 2

11

r1

I
0

_Ir_ r2 11

COS ocd 'X'" '_1 1 sin (r-_)
J

1
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and

12

0

2

r2

Finally

Lz -- Lq + h (_ qr I - 2 ,_ 2r2 ) . ,_Ir_ sin

12

2 sin ( -- + _ ).- 2 2r2 r2

11
(

r I

In the present example, the reaction forces consist of the impulsive

forces so that M = K . The impulsive forces exerted on
z z

are numerically equal to

_2 2 2

The impulsive force exerted on tho strong part of the chain

vanishes. Since the chain is flexible, the reaction of the ground

on the chain link which rests on it, is not transmitted to the

entir_ chain as if the chain _ link_ are cut off from the rest of

the chain and simply got off with zero velocity.

Therefore, it follows that

m II

z g
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_quation (2.9) is then expressed as

Ii z +¥I g g 2 J

11

2 sin ( ) - 2
- _ _ 2r2 _2 g

(2.1o)

Since

= 2 d.¢S

then (2.10) becomes

2

d_2 4-_.r

rn(h_+111+ 2 _ r2 (h+121 ....
g

t'_ f (,-f,)

...(2._I)

where

I, 2 12 cf

z+_ 2 (h+:_)÷ 2 _ r2 (h +I2) .... 9"
g"l g

I
I

L
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_quation (2.11) is the linear ef the first often in tl'_

for argument _'_ , therefore

where

_t 2 2_2
a = I z +-----g r I (h+ll) g r2 (h ÷ 12 ),

 'ir- 2 3 4 r22r2 ,..
b = - , =

g
' r - 2 __r_I u_ _u

3. PROBL,_M O1;' TI[_; T/O MATJ';._IAL POI[IT5 I[AVI!IG V:.l_I,_.?i,_,; ;,[ASSZO:

The present discu_si_n deals with the two celesti;_l bodie.-

having v_ri_ble masses, the process of whose change of mass can be re-
e

duced to Meshersky's ca_e (whose mass changes according to Meshersky's

law). In ether words, We will deal with two points having variable

masses se that the particles until ejection rema._n in the mate_-ial

peints, and similarly, t;_e Joining particles after addition

have velocities equal to the velocity of the material _oint to

which they Join.

1. Meshersky's two law s ef Chan_eef Mass:

Suppose the ralntive velocities of the inertial centers of cha_,..-

ing masses in relation te the corresponding mate'i_l points havin!-

variable masses are zere. Den.t. the masses efthe,points by m I and

m2. and their radius vectors in respect ef certain station_,ry pnint
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by r I (Xl, Yl' Zl) and r 2 (x2,Y2,Z 2) then equation (2.5) ef

Chapter I yields:

k2mlm2( 1- 2)
m I -- . _ 213

and

d2_ 2 k2mlm 2 (r2-r 1)
m

where-k 2 is constant of the attraction.

(3.1)

(3.2)

It has an application in the problem of th_ two celestial

bodies whose masses decrease en ,_ccount of radiati_n (double stars:

for example, the system of the sun aud the comet so that the mass

lost by the comet leave_ it w_h infinitesimally st,loll r_l_tive

velocity).

Cancel m I and m 2 from equation (3.1) and (5.2) respectively.

Substract ('_.I) from (3.2). Let the radius vector ®f a puint

having mass m I in respect of material point having m_ss m 2 b-

denoted by r (x,y,z).

r = r2-r 1! x = x 2 - x 1, y--y2-y I, z = z2 - zl;

,_'x 2 2 2r- + y + z (.3.3)

_Id transposing all terms te the left, we ebtain



t

-83-

_2_ k2 (mI ÷ m2 )
-- + , , ..... .-. o (3.4)
dt 2 r 3

In the present case. the differential equation ef the r_lative

metien (2.4) is identical with equation obtained fQr the constant

m_SSe

Since equation (3.4) assumes the vector integrsl of the areas,

the point will mere in a plane and, therefere, we may suppose that z=e,

Equation (3.4) en prejectien becomes:

2 2

x÷ _x _y"" = O, y + ..... - -- 0 (3,.5)

(x2 . y2) _ A
(x 2 + y2) 2

where_ 2 = k2(ml + m2).

Let

2 I (3.6)
-- at • b'

i
i

i

4
i

J
i

where a and b are constants; t - time. This is kne_n as First

Law ef Meshersky, and was werked eut by Meshersky in 1902 _9_.

Making the transformations

= at+_ ' _ '
at + -a(at + b) )

(3.7;

We obtain the differential equations cennectinp_, J/ _,_L Y

t_ J
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4 fm
+ - O_ ._ +

"_ dP
( _

+ _ )

= O.

1.;quation (].8) show_ th'_t th,: i_ve,-qtig_.ted _roblem mF the t',.,o

point:: h,_vin_; w,ri,ble ,._a.'_se:_re uce_n to th, c].assic_l problem._ of

the two m,_teri_.l point _._ith c.,n,,÷ .nt m:u';se.*-.ul *_ no_d (pulled)

together accor_in," tn N_wton'q law.

9)

where s and b are

It is easy to see that f_rmula (3.6) is u special c_se nf ()_._"

U_ing the tronsfnrmations:

/ x. --_ y, dt (3._o)

¢

., d_'

}_")

wjere i,I"-"ac -"4""

II

2

(%2

....... (_._)
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Consequently, the problem of motion of the t:lo n:,ints h:vin:_

variable masses ,_n.!mutu_lly attractin" (pullinc) o:_ch oth, r a:cor,_i_w

to Newtnn's law re_luco_'; to the mntion or one point :Jith con_tant of the

t_:'o forces nam:ly, New,toe's force of nttr,ctinn :m:: the ether is

prepcrti-nal to the distance. ?_qu_,tion (_.qq) is interrupted

Coordinates are expressible _Ls elli_tic function_ of time.

' c2. Uoti,mof Chan_in_: _._as_cs v_h_u the _vera_'e (Relative)

Velocitie_ are _ero.

Transfol-m e,!uatinns (3.5) by introducln_' n no:: v_riable_ ,

This trau:_fnrms the equ_tinns to

d2x I _ dx x
---_ +--- + __--------- = 0
d " /n d'¢ d d.

2

(x 2 + y2)

fA

t

2

-- "5 =

(x2 + y2)

We observe that the mnnotonie p_ _erty of_ taken an a function

ef the variable._ follow:: from the monotonic prop.try of _ a." a

function of time.

• _btained the fo!Io_¢ing ,-e,_ult of ,_._,. L_pinn _4_. In

case of the F_rowin Z mansec the proble_ of the two point_ whe:;e mnt:io',%
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is determlne8 by equations (1%.5) reduce_ t:, the motim_ of ", noint

with c _n,_tant m:_ sen unler the act'on of thr, force ,,f _ttractim_

accer:in; _ t_ Neu, ton'_ law "_n th,_ r_,sist_nce which i:; expressed _,'=

_ pr ,_uct of velocity an r: cert:_iu function of tir,h:. In cn_e of

decrea:tin ma_;;_z the lar:t (force) is ",:plncel by ac:cele_',tinl the

tanger_ti:l force cx :re_,qerl a: a Cuncti,_n ( of the s_le t},pe).

l'he work c._rried out b,j G.]!. Dubshin _r, the system (3_';)

was publi,'_hed in "Th,: Jou hal of Astronomy _' durin, the

years 1925-1930 O5-19] • .r, _ill cousid:,_ onlv_ ,_ne i._,terostinI*,

result published in his fir_t re,>,_rt.

,e u'ill assum,_ th,_1" ,/i i, _, function of ti::e enl:t _nd

hence it i_ ,_ositive _in le v;_lue:i, contJnuou_ ;nd _!i 'fe:',,:;tl..ble

continuity o f/_ (t) ensures in any clo-_ed inter,,_l o_ ti:;e.

,_yste|_1 (3.5) afmit_ :_n .,,,.ec!i,,:ta_-,.,l:'h_,;h i:_ _::].:_"

coorqin'._tes h_s the ._orn

2
r (_.cons t,,,_= c, c -

vhere _ i'; p@!_r angle. Let C # O.

ProJectin;: the wector equation (_._) ,_n the ra_,iu '._vector,

p. ._2 (t)

I
_--.______

by (3.12), _ get

r--T" " 2
r _
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Sincd/(t) is a hound function, in view ef equation (3o_)

we see that r will acquire infinitely large values only when t tend_

to infinity. The fuactien r (t) is bound " in any finite interval ef

time C te T_° It is siagly valued because _(t) is singly valued and

dlf_erentiable,

We will develep Benz fermula for the centra_rce

I
Set u = -- (3,,15)

r

by virtue ef (3.12) and (3°15) we have

I d{[_ (3._6)dt ----=4
CU

The symbols with prime denote derivatives with respect to _

Multiply equation (3.14) by r 2 and change it into new variables.

It gives

= + u (3.17)
C

Where F(_ ) -2 [' _jLt(P .

Slacer (t) is a single v_lued function therefere,By

virtue ef (3o12) _ Is alse a single valued functien eftime.

Consequently _ (t) to a single v_lued functlen. It fello_s that u

willl be single value_ function efa pelar angle _.

Suppose/6 is n ro_t ef the equation u (_) - O. Tke value

u , O aak_s r Inflaitely large and ceasequeatly t is infinitely large.

Since u i_ a single value8 _unctie_ of tMe _ngle _ rest _ cannet be ef
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•fractieaal multiplicity. Therefere u (:_) and higher erder
I

derivatives for _' ( at_=.z_ will be bounded functiens.
J

We have

d_

d-r--v-. = F' d'_- = cu2F' (3.18)

If terms ef u and its derivatives, this is equivalent te

d 2

u 2 (u _" + u') - c_--

i

II view ef the beuadedaess ef u' (_) and

shews that
dt

(3._9)

(_) equatiQn (3.19)
:

tends te zere as u tends to zero.

The result obtained by G.N. Dubshin stated tha_ the necesear._-

limit ef El as

dt

ioe,_

condition for the radius vecter te become infinite is that the

t tends te i_finit_ exists and is equal te zero ,

lira _u2(t)
dt = o (3.20)

If _(t) satlefies the condition (3.20), them u_der certai_

initial conditions r tends te infinity a8 _ tends to infinity.

And if _(t) does net: satisfy this ceaditi_n, the,t the raSiue vector

will be r_stricted for any fialte initial valuos auad for asp t.

Let ue examine aa interesting case studie_ by Stremgren _I_

when u2 is a linear fuactiea eftime. The osculatin" '_,_'pler,_lements
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of o_'bital motion of a point, divided by/u 2 ere examined and

dinturb_nce_ are ,Ictermined, i.e., the difference bet_leen

the osculating elements and the constant undisturbed elements,

_etcrmined at the initial instant. It has been proved,

tbn! with such determination of osculating elements, neither

tee eccentricity nor the l,,ngitude of the peri-center co_ rain

spcular members. Explicit selection of components, ouadratic

an_ ",Anear in relation to time are given in formulae for

p, rturbation of th_ average anomaly.

In the worh of Samoilova - Yakhontova C87_ Stremgren's

m_t;hod is given for cases when_ 2 is a continuous differential

!unction of time.

The method of analysis by Magnardaze C49 " 5_ where

-ecurring equations for calculating the general term of

representation iv the form of exponential series of time for

Cartesian coordinates and its derivatives in Complanar problem

of three bodies, one of which has a variable mass and the

oth,_r two have large masses and move in a pre-set system,

",.re given.

L
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3. Motion under Absolutely Zero Velocities of the Changing

If the masses of the two heavenly bodies change due to (on

account of ) cosmic _oud found in the utatistical equilibrium in

respect of certain ey6tem of coordinates, it is treated as similar

tO the problem of the two points whose motion is described by the

differential equations

=1 d2rl k2"lm2 (;1 r2)
dr. 1 d_ 1

" d--_ _- (3.21)

' -" " 3 dt dt

i r I -

(3.22)

Relative redius vector and relative coordinates (3.9) and

the above equations yield the equation of relative motion in the

form of

d2_" k2(m I + m2)x' 1

r3 "--+_' "B1 mum m I _ m
dt dt "2 dt

..... (3.23)

Equation (3.21) and (3°22) assume vector integral of

IIOII In tull o

nl _* n l'_" (3.2_)

i

...... _,, ,, L
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Here it is not difficult to see that the equations are added.

Since

dr2 dri _r

and in view of (3.24), the first part of equation (3.23) can

be written _u_

m 1
d_ d :In ( I q )+ A ,, d in- (3.25)

d_ d_ m'-T÷ _,_ "_+"2 d_ "2

_uppose that the constant vector momentum A is equal to zero

the quantity _ remains constant, then the equation (3.23)or

can be written as

a_mmmmmm _, I m

dt 2 r 3
d_ In ( "1 + 'I ) (3.26)
dt m I m 2

Projecting equation(3.26) we get

r) " nl m 2

'_+ k2(m!'°"(_)7
r' .,_In ( _I + ,!_),

•, k2(mq+m2 ): d I )

,+ s') ,, . s_,ln (m-_ " m"_ "

(3.2?)

T

• k

L ...... ,i
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Equation (3.27) admits the following three area integrals

m I m R '

1 1 ) ¢2•,- ,,,-c .-T+

I..) c3J-+ m2xy - yx = (ml

(3.28)

Therofore, the motion occurs in the plane

ClX + ©2y + c2z - O.

In this plane the double sectional velocity is equal to

i 1 m2 I + 12

we get

Projecting the eqqation (3o27) in the radius vector

2 k2(ml + m2) ..dr - r - ..... + r_'T In
r"

(3.30)

(3.3_)

Considering the integral, we find

r •

r 3.

k2(mll + m2) 1
- + rd in ( 1_ +-- )

2 m I m 2

,.....(_.)2)
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Let

u = 1

r

TheL _3.30_ g_ves

d_
dt = ......

(1__ • I__ ) c_2
% a 2

2
Multig_ying the equation (3.32) by r

in the form

(3.3))

yields Benz form, la

1
u • u = -_ f(t) (3.3_)

c

where
k2 2 2

mlm 2
f(t) = (3.]5)

m I + m2

and u denotes derivative for _.

Further suppose that F(_')-f I t (_)1

(3.34) becnmes

, then equation

r/

(3.36)

Let us suppose that lasses 11 and n 2 are finite (restricted)

and not becoming zero in any finite interval Its, TJ, then_' frol

equation (3._2) it follows that r(_) would be finite quantity in

any finite interval. If mI and 12 represent single valued and

differentiable functions of time then we will sea that f(t) is ells

single valued and differentiable. In view of the relation (3.]3)

I
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i"

F(_ > also turns out to be a single valued function of _,

the polar angle_ .

Oifferentiatlng (3.36) wrt _)I

have

2

and multiplying by u I we

2 "' k2 mlm2 m2 2
u (u + 2') = -_r d m2

_, m,. m i i

c m1+m 2 dt m I + m 2

(3.3?)

Let ,_' be s valu. of f) such that u (;') • C. Then the sinEle

"1 )valued character o£ u requires th_ quantities u ( _ )+ u (

to b6 finite from here, we see that as u _2o.

22
mlm 2't (t)..---- =I=,2 ,
m1+m 2 dt m I + m 2

(3.38)

also tends to zero.

Thus the existence and equality of the limit of the function

_ (t), as t tends to infinity, is the necessary condition for

the relative radius to acquire infinitely large valuea.

4. E_UILIBRIUM OF THE BODY,HAVING A VARIABLE MA_S:

Lot us obtain equations of the equilibrium of body having

a variable mass and consider some illustrating examples. In

particular, we will derive the formulmm for the pr_ncipal vector and

the principal torque (moment of force) of the force of free

molecular current on the body.

.... L
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1. Equations of Equilibrium of the Bod_:

By a body of a variable mass is meant a closed-packed

system of the material pointB of a variable mass, the distance

between which does not change. Thus, while examining a body

of • variable mass we consider the points with correB:-o_l_%ng

masses to be represented by sm 11 areas of the coordinate system

finally connected with the frame of the body. This view preserves

the Kinematics of the bo_y havin8 constant mace in the mechanics

of a variable mass. Since the fundamental equation 1.2 in chapter I

was developed on the strenSth of he relative motion of the

particles and in the senue of a solid body there may be movement

of the particles_ thereforet we will study their impact on the

action of the body.

Let the body havin_ variable mass be figed. Then

This yields the kinetic moment 1 of the body in respect of fixed

point. Xn view of the equations (1.8) and (2.") for the change of

the principal vector of the moment and the Kinetic moment of the

system of the points having variable lass we will obtain the

following vector equations of the equilibrium of the body

having a variable mass|

r ÷ a - O, L ÷ M - O. (_.1)

!
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an_ L are _rinnipal vector and the principal moment of the

external forces and R and _ are the principal vector and the princli-

pal moment of' the reaction forces.

The auxiliary systems related to the body serve to determine

the reaction forces of the poin, ts of the bod_. Therefore, the

angular velocity of the rotation of the auxiliary systems is equal

to zero and hence the principal vector and the principal moment

of Cariliso forces, vanish. The relative accelerations of the

particles will bn equal to their absolute accelerations.

Equation (4.1) may be rewritten in the form

(4.2)

+ _ -"-_ _ x ,;= o. (a,.3)

where l and K denote the principal vector and the principal

moment of the ilpalsive forces. W- acceleration of the particles

X "_-_ X "_'IWx • 0

y

J
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Lx + Kx -"+'/'m(yw z'- ZWy) = 0

L 7 + Ky -/ m_zm x - xwz ) = 0

L z + K z -_# +m(ZWy - yw x) - 0

(4.5)

_qu_ticn (4.2) an_l (4.3) as well a_ _ projections

(4.4) and (4.5) can b, used for determination of reaction during the

processes, connected with the movement of particles. Here below the

corresponding examples ar, illustrated:

Examp]e-1 :

Take a formttl_ for thr draught of air screw as shown in

Fig.6. Let v the velocity of the incident stream and u 2 be the velo-

city with which the particles of air push out from the screw.

Denote by x the ux is of the rotation of the screw. We will

consider the occurrence of the instantaneous change u r - v in

the velocity of air particles. For this, we take only impulsive force

different from zero and the projection of which on the X-axis gives

_b x = aBs "_ (ur- v) (4.6)

where GB - wight of air pushing not f_om the sc1,-.w per second;

g- Eravity acceleration.

Put uv rlu; then in accordance with the first equation of

the system (4.4) and equation+ (4.6) we obtain

X -- - GBg'qUr(q -_ )

L
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In this the quantity GBg'lu_ is called velocity bend oF

kin6tic bend.

Since _y third law of Newton, draught was the value X

with neEative sign, we finally get

F - GBS'IUr( I - _ ).

L

%

Exampl.e-2

To determine the horizontal component of the pressure of

water set on the fixed paddle of the turbine wheel if the luantitative

(volumetric) expenditure of water _,

P.o. 6

and specific gravity y,

_f

Fig.6 Fig.?

From Fig.? it is evident that

\
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In the present case C= O, we have

. g.lQdt0Since in this formula, m = -I' therefore

g 2
A A

from here we obtain

I _" _'12___7,._--}_Qc_-_,__,,_-_Qc_2- _.
g

|ince when = 0 we have

X -_ mW x a 0

therefore, we find

Y x m

V

- X = - L Q (T I + v,?. co._").£

Q Principal Vector and Principal Moment of the Force of

Action resultin_ from Free-Molecular Fl_x _Ylowl on the Bod._:

f

Let a body with convex surface rest on the incident stream of

electrically material gas which may flow in a free-molecular state.

The problem of flowing free-molecular stream round the body leads

.e

k
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s

to the case of Meshersky surface interaction with the body of changing

particles.

We will represent each point of the surface of the body in three

dimensional cart_lan system ( Xl, x2, x3,) such that x I is along the ex-

ternal normal and x2 and x3 in the tangential plane. We denote by

u , u u projections in the cartesiln system of the velocity of

combining the molecules and by u_ 2) _2) _2), u , u - the projections of the

velocity of seperating the molecules. The free-molecular flux (stream)

characterises a distribution functions f. This function provides [I0_)

A

the number of molecules d T found at a given time t in a volume

element d _ with coordinates x I, x2, x 3 and velocities lying in the

.interval from u p) u p) u p) to u I, , , + du I , u 2 , u3_as follows:

, , _ , Cp) (p) Cp3d. = _f ¢Xl,X2_X3, u_p3 u_p} u p) t} dxldx2dx3du 1 du2 du3 . ¢_._3

o

L._ _.

In expression (4.7), n represents the number of particles in a unit

volume of gas. (4.7) defines Boltzman equation.

Suppose the gaseous medium loves with a velocity u and is in

the thermodynamical equilibrium. When these conditions are present,

a solution of the Boltnan equation is identified in Maxwells distri-

bution function

f = A1 e -mh I __(u_1')2 + (u(21) + u2)2 + (u_l) + u))21_

where J

A1 \_-j •
(',.9)

(_.8)
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In expressions (4.8) and (4.9)

- mass of one molecule

h 1 -_posit_ve constant wkich is inversely proportional

to the absolute temperaturo Tq of the gas

ul_u 2 and u 3 projections of the velocity u of the flux

R :. _(s) as, (4._o)

M - - _ x_(s) d, 14.1!)

where integration is performed over the surface of the body.

The reaction forces causes collision of the molecules and

their repulsion. Therefore, we have

of particles and their repulsion.

(_.la)

are contributed by co_lisioh
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_ince the axis of x l is along the exterior nozlal_ therefore,

in view of (4._) and (4.8) we 8or

-,hI
i-1

U_I)'u(1)_ du_l)

.....(4._3)

_Vhe quantity

V

/_m mn (_.14)

is density of the gas flow. The limits of the variable u_ 1)( are

taken from -_oto zero because the molecules having positive

velocities u_ 1) in the direction of x I will not experience collision

with the surface of the boey.

Pro_ecting the expression (4.13) on the i th axis

(i " 1,2,3 ).

,,% ul )2

u I u i • du 1)

integrate

. ...... (;. __)

t

, ,,,,, .....
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_(=) _- ' •

2 1 _;_ "_1 c=d <_
+ (u 1 + ') (-- _-/----_-_+ _ • )

_h_ 2 1 mh.| 0
(_,.'16)

Taking £nto con_ideration the an_le_ between the x I and

the opposite direction of the velocity u 1 we have

u1 = u =ne._ (_.17)

The most probable velocity of the thermal motion of the molecule is

denoted by C I and is determiued from the equation

1
(4.18)

Traneforming the equation (4.16) with the help of (4.9),

(_.17) and (/+.18)_ we get

I_(8)= I ÷

(_._9)

where x

2 . ]" "--"--" • ,_2 d'_ "

o
(_.zo)

b==_ .... .,
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Directing the axia x 2 along the negative pro_ection of the

velocity u of incident ntrea= in the tangent plane, we will have

u 2 - - u sin _, u3 - 0

PUt U_ 1) - u(21) in (4.15) and integrate

0

• ) (..22)

Now in view of (4.9), (4.17), (4.18) and (4o21), the expreeaion

(4,22) is transformed into

21_r_- -,

- ( u co= _ )z

÷ c I c 1 4J

z= ¢or=uZ,(_.15), in plat. o_u_I)_ =etti_s _alueu:_l)r _hich
v_niehee in the choeen coordinate system then we get

a(=) . o (4.z_)

J

i
f

In case of ep=aular z-eflection of the moleculee

R_,y,
(_.ZS)

The £aotor R_ ) introduced by the diffuae reflection may be

obtained from (4o16) by putting u 1 _ 0 and replacing h I b7 h 2. The

conetant h2ie inveraely proportional to the effective temperature

(_.2j)

t

\
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T 2 and 18 determined by adjustment equation for the wall of the

body. From here, we write

(_.a6)

Here

1

characterises the most probeble velocity of the diffu.e reflection

of the molecules.

The number of particles received or repulsed per second is given

by d= 1 dm l

d--_ = mnl' d--_'= mn2, (".28)

where w I and w 2 are the corresponding number of the molecules,

knocked or reflected in the unit time.

The values of w 1 and w 2 are obtained from the relation (4.7)

and (4.8) in the form

,, i I_ 1' • I i., du(',,,

*" _ i 1 " mh2

.= _IL•

In (_.30),

..... .(_.29)

du_ _) (_.30)

(4.31)

i-

..... J[.m • ' ............. • "- , n . ,. - • • . .- .......... L _ ___ J
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Performing the integration in (4.29) and (4.30) and making

adjustments in the light of (4.93_ (4.1731 (4.18), (4.27) and (4.313

wu get

._ ci (u cos_)2
n_mn( _ e" Cl +

2 L 1 + err ( u COS _ (4.32)c I

J c2

n2-n (4.33)

We will examine the diffuse reflection in detail.

the mass of the body does not change, therefore

Since

dml = dm2 and thus,

dt dt

by formula (4.28), n I = n2. From (4.32) ana (4.33) we find

C2 = cle

- ( u cos_)2

Cl +_I;_-'U cos_ _ I + erf ( u cos_31__
C1 •

(4.34)

Expressions (4.26) and (4.363, yield

where I_(') 1 i "( u °°s_)2 II 1_, .l;po2 oz. °I ÷]_u oos_ ÷ err( u °r°°s_>

In the event of the diffuse reflection we thus have

i

i_J I " = i, - • -- -- i ii , i

(4.36)

L
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Now suppose that a part of the molecules _ undergoes the

diffuse]_r_ection and the remain%ng part 1-_undergoes the specular

reflection, then by virtue of (4.25), (4.35) and (4.37), we have

(4.38)

_(s)
_(s) - ( I -_) _Iz_22 =

o
For the projections of the vector R(m), in view of (4.12),

(4.24) and (4.38) i we get

R(8) .(a o-) _(s) (,)
Xl - I111 + O- R . ,

(8) _(8) R(e)
Rx2 - 0"_12 ' X_ . 0

The pro_ections o_ the vector R (m), using (4.19),

(4.36) and (4.39), finally takes the form

(4.39)

(4.23),

• ";I"- 2.2_,xco,
(,)._ ,r,in. R(')
x2 • 7E x (,), x_. o.

2+]_-,(I + err,), ,- scoe_,,- uHere X (_) - e"s Q'_

(4.41)

(4.42)

In developing the expressions (4.40) and (4.41) the

teanlformations from the works erR,Go Barantleva _) wore used. In

...... ..._ ii _ " .... _[--" .... L Z--................. .., =
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his works, the formulas of the form (4.40) and (4.41) are employed

for the calculation of aerodynamical coefficients of the translational

motion for rough bodies of simplest form in a free -molecular

stress (flux).

Let us consider the application of (4.40) and (4.41) in finding

the projections of the moment of reaction forces about the axis

(x,y_z) finally connected with the body. Let el_ e2 and _3 be the

unit vectors of the axes (Xl, x 2, x3). 3lace R_ )- O, then from (4.11)

we have

I!l j• . R(s) R(s)" "e R(s) e_ I_(s_) de,
M x ) y(e I Xl + e21 x2 ;-z_ ly x I + ,,y x2

= - II Iz(e R(8) _(s)) R(S) e R(a)']
"Y "(s) " ix x1 • e?.x-,x2 - x (%= xl • 2= x2'l..]ds, (_._3)

M • m

z
e2y '_x 2 - Y_elX_Xl• + + .2x_x2!j d..

Here elx, ely and eiz are directions cosines of the axis Xl; e2x, e2y

and eR= are directions cosine Of the axis X 2 in the system (x,y,z)

are variable coordinates of a p_int on the surface of the body.

Let us examine a tEuncated circular core with a semi-solid

angle_and having Z-axis along the s:mmetric axis of the core. Let

a be the radius of the cross section passing through the center of the

mass. Place the origin of the oTstem (xoy,s) at the center of the

maSSo Let z 1 and z 2 be coordinates for points located in the upper and

lower sections of the base, respectively; zl_ 0 and =2> O. Let us

presume that in this case, the diameter of the lower _ection of the

J
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base is less than the. diameter of the upper section. Now let us

examine the distance h, that equals h = a ctg# .

The angle between the axis x and projection x I for the surface

. We have obtained for the lateral surface, el_x =markx_Yl we now

= COS# COS # , e Rly = cost#sin r ' e16z = sin,_ ; for the upper base:

e l_x = O, e_y = O, e_z = -1 and for the lower base: eHx = O,

H H

ely = O, elz = 1.

The directing cosines of a=is x2 are determined with the help

of the following equation system:

_2(;x;1) o, ;_Fo. 2 2 2 = I, _;2< o= e2x + e2y + e2z
(4.44)

Let us fine the solution to equation (4.44), that corresponds

to the lateral surface, upper and lowez" bases. For the lateral

surface we have:

e2x =_6 Ab C'I' e2y = C6B6 C_

(4.45)

_g(a11A 6 + aI2BG+ al_) _ 0

IIez,e we have taken symbols:

d6c6- a_
A6 = a6 •G- bR d6

a6 = a12 sin# • all cos_sin[,

b_ = all sin_, , al _ cos/_cos6,

d6 = COS# COS_, e_ = cosp sin[, f6 = sin_'

where all , a12, a13, - directing cosines for the system (x,y,z) for

reverse direction of velocity u of inflowing gas.

For the upper and lower base we shall record:

oc. ocH o

k,= ___,I
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Chungir_g in formulae (4.43) from the surface to multiple

integrals, we get:

2_

0

2y _"x2BZ1 (a+zl x2H "2 (a . =2 tg/_ )'_
(_._7)

2 ;_(s)
x.- t,_ f _'x16 (A tg2/_-S)cos

0
+ Rx26(a) (Ae_, tgp sin_ - Be_x) I. d_

M= -x cos/z x26 (.x2 xl sin tl ) a

(_._8)

I

J

Here

(_.5o

Indexes &,B,H indicate that the corresponding values are

_a_e_min_for the , l_t_ral, upper and lower surfaces.

Forlulae (_.%?) - (_._9) are useful for finding _he

aoaents of interactions of a free-lolecular 8tress on the boi_

having the shape of t_wncated core. It may be remarked that it is

not difficult to develop similar formulae for the other convex

solids of revolution.

I

__.a
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5. TRANSLATIONAL MOTION OF THE BODY HAVING A
VARIABLE MASSz

i ,i ,. l

1U Equation of the Translational Motion of the Body

HavinE a Variable Masaz ....

In the last paragraph i_ was remarked that the motion of a

body having variable mas6 may be viewed as motion cf a fixed system,

finally connected with the solid body referred to above.

In the event of translational motion all points of the bod_

have the same accelerations _e Therefore, we get

_t 2

In case of an auxiliary system for all points of the body

we consider a ._ixed coordinate system which us unalterably amsociated

with the body. Therefore,

_-0

Equation (1.16) becomes

m; ,_ ) + _ (5.1)

Whore

t In this oonneotion we will discuss the example of the

t reactive boat, I.V. Meohersky explains (examine) the translational

l motion of the boat, (Fig.8)

[ ,• I
........ _ ......... ".2 ":....... X..__

(5.2)
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P.c,8

FIS.8

The boat is operated by a pump A which lift6 water from

the ent_an©e channel BA to the exit channel AC. Let v_ and v_

be the relative velocities of the incoming and outgoing water.

Meshersky thinks that these velocities are independent of the

velocity of the boat.

Denote by p the mass of the water entering the boat through

the channel in the units time and by v the ratio of the area of

the entrance _ aperture and the area of the exit apertures then we

get

____ r dm2 1 r r rB pvl, d"_- = --n PV2' v2 = nvl"

AssuminE the resistance to be propertional to the second de6ree of

the velocity - k2x2,. Msshersky obtains

4

nx - - kax 2 ÷ p (v_)2" (n - I) ().3)

HGro m represents the weight of the boat $og_ther with the water in it.

It will be a constant quantity. We can, of course, reject the pressure



-112-

of the water flowing behind the boat.

Meshersky equation (5.3) explains the motion both for

variable velocity v_ as well as for the acceleratedconstant and

function of the _Lmp.

We obtain the equation of motion of the boat from the

equation (5.1) in the form

r
mx - kax 2 + p (v_') a (:n-l), w1 (%x ÷ rims.x) (:5.;)

r is its
Where mEX is mass of the water in entrance channel BA t w I

relative acceleration; mBU X As mass of the water in the exit channel

AC.

The equation (5.4) reduces to equation (5.3) given by

r 0 i.e., when the pump operates throughoutMeshereky when w 1 -

with uniform efficiency ( with the same speed). From equation

(5.3) it is concluded that if n = 1, the boat will not then mover

whereas equatio_ (5.4) shows that the motion As possible under

some conditions. _

0 Examples of Translational motion of the Body having

Variable Mass and without Internal Movement of Particlesz

When there is no relative motion of particles ( or when

the particles move with uniform relative velocities) we get

i

w "O0 a-_
r

Suppose the particles do not move-wlth uniform relative velocities,

!

\
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"",;,'n the, i;j ,I. 'ivr i',_i';':" :,:',: i "r ,','nt fr¢,II '_,.r- (,!,_ n,_t v:-1,::;}i; ,m_,a

it. :'..coot _f _ ,!ni:_ on the b,_un,!ry of the :;,_li(ib,'_.l_/. )',,'n,'e,it, the

c' ,, nl" foJ'_,.l, c, (I.1_) :n8 (l.IP), u:_ed "oy tile c;_leult, tion of tile

principal v,:ctor of impulaive foyces_ , integration and s,,en mntJon may

be e,_vyie4 over only on the T,oint:_ 12ing on the :-urf'_ce nf the bndy h-vinc

in the p.r,.:-enL ," ,,_ the iI:l!_,l.::i,.efol,cc, j-_h ;:urf:,,-'L,oint_ t,.i:in_

_' ' ection of .?:,'',t.u" 1 t ':;5" l:e ,,:ritt:en in tb_ forminto con_:i.],,i';_l..n :

" _%1:_Ii ,lrl
_j :--'-_l't ' (_lj - 7 )-. ...... _] .... (_ r ), (.,,) ...j j " "

_1rq

,.:!lr,_'e, ._l_L0t _,_;,:'_,,',:ntr the: r- t,,_ of ,-,i.uinc, r,::_ by, the '-th :?oint;

r ........ t _ ,;'cUlj ,?2r_rnllt: the "'lo_its' of th(" c._nt_.r ,_? iu.,',,'t:_:,._f _,' r.!:_:,_n

rc.v,re,.-_:ntc the r:.t,, of rc<luctinn of the, r_:.r,::of j-t]. ,,,c-int_U.. '" _r,'_cntr_
• ,!3 "

the w?locity of the [_.'_'t'._l c:,nt,-z" ,_f the i',hlcc<i i':,._ v. i_; the _..,_.l.ocit,v
3

of j-th :oint of the soli_i l)r,J3,. i':c:;,':of j-th _oint i:: e,.u::l to

mj : r_oj + mlj - z;_2j,

,_h_r;, moj is a cmrt',_t :,w;ntity n,l mlj rnd m2j r.lu.,..,-:nt the no_-noc::tivc

functiona ch:,,r:.;tt,:ri;-:_n_7:the :_!:,itio_s _n_l reduction of the ma:-;_.

.,:hen o::clu,-iv,,l>" one of the _,_.o,.:c_:_,:_of _',,,lition or eJectio__ of

5 "p;Irticl._n t:,li_ _l:: 'o in j-th 2_int, foz-l_ula (.._) t_kec the form

- dmj_
= " 7j ). .....

in 45.6), uj ch:u'actcr the: ve_.n,'i_3, of the in.'rti_l ccntel' of the _dditions

or _,ub:-tr,_,-tion of the mrr's.

In such a c;x_-e, the tu,incip:,! vector of the im'ulrive fnrce._ is e.lual

to

J
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J

(5.7)

Where the summation is carried over the surface points of the body.

Or

l!
(s

(5.8)

Where (s) - surface enclosing the body, ds - element of the surface

referred to, v (x,y,z_t) represents the density of the surface layer

mass of which changes.

We will study two examples discussed by I.V. Meshersky _3_ .

Problem No.1

To determine the vertical use of a fastened balloon

assuming that the resistance of air is proportional to the square

of velocity ( - k2x2). Let the initial velocity of the balloon

on the earth be zero and the lifting force (P) the spindle on

which the thread is rolled, is revolved with an angular velocity

so that the unrolled (part of the) thread at any instant has the

velocity equal to the velocity of the balloon.

The system comprising the balloon and the thread which

moves vertically upward with the balloon has mass

m = mo (1 +_:'x),

Where m o and_x are positive constants and x represents the

vertical coordinate of the balloon. The system referred to _bove



-115-

with the nature of the motion ib similar to the solid body having

a variable mass.

The reaction force arising from the abuence of the relative

motion of the particles is the _ame inpulsive force which, in the

Siren conditions of the problem, le equal to zero, because the

particles of the thread get attached to the mechanical sTstem with

a zero relative velocity. Therefore_ 'R = 0 and the equation (_.I)

on Fro_ection on the verticles axis Ox becomesz

Or

,. k2x2mW = • - M_ -

dx 2 2k 2 x 2 2P

"d'E" ÷ m° _1 +oex) " so (I +'_X) " 2 g

X2 " _.. _(_+2_ I) (1 +O._X) + C (1 +OCX) "_" , f.,=V_mO2k2-

The initial conditions being t = O, x
o

found to be

= O, x o = 0 constant C is

o.

Suppose a heaw8 and absolutely flexible chain rests on a

table and only one of its links hangs down, as shown in FigoP. The

problen is to find the tile taken by the chain in falling down fron

- 4

I

"L _a
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the table to the floor. Let the height of the table be h and the

length of the chain be a. The process will be accomplished in three

stages: first, from the comaencement of the motion till the chain

touches the floor, called the plane o£ the floor Q). Secondly from

the moment of its contact with the floor till the last link of the

chain leaves the table, plane of the table P). And finally, f_on the

moment the last link descends till the entire chain rests on the floor.

In the first stage of the motion, the force of gravity an_/x

acts on the descending part of the chain, where _ represents weight per

unit length of the chain and x is the length of the descending part. /_'

The descending part of the chain acts as a body possessing

the translational motion with mass m s L x, and in which there is no
g

relative motion of the particles. Therefore, the principal vector of

the reaction forces is equal o the sum of the impulslve forces which are

different from zero at a point where new links Join. A link before

Joining the _escending part engaged in the motion rests on the _able.

When it Joins, it _oin8 with Jerk and then the link will have the

same velocity as that of the solid body under consideration.

Consequently, by (5.6) the principal vector of the impulsive

forces on preJection on X-ray is that which is directed verticles

dovlwtrds is equal to

f

i

'_ (u x- vx) --_'x :_.

t

/!

I



_f

>

r

-1_?-

P

Q

J

P.c.9

becomes

SO_ we have

¥ig.9

Equation of the motion (5.1) on the pro_ection on X-ray

xx'" _x-

x::'- gx - x 2

Since the equality

holds therefore,

x_Tx+ 2x 2 - 2_,

Multiplying by x 1 we get

x2 ex 2 2x_Z 2_ 2
_-" + • 9

L..-.
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_ince initially the chain was at rest, therefore for t o = O,

2 2
x ° = O. Rence C1 • _ gx o. The quantity x o is very small because

initially only link o£ the chain was hanging from the table.

Therefore, we take x o = 0 and thus, C 1 = O° Divide both sides by

2
x and take square root, we have

f

Integrating oncj more and taking into con_ideration the initial

conditions, we get

Time taken in the first stage motion is

t 1 • (.5.9)

In the second erase o£ motion, the mass of the mev|,ng

part of the chain remains constant at m = _-S h. The reaetion force

is the same as in the first stage, because the ehain in absolutely flexime

and the links of the chain after being deposited on the floor do

not produce reaction force. Other facts of the situation have already

been discussed in the example give_ in section 2 of the present

chapter.

Therefore, the equation of the motion described in the

oego_d stage can be expressed as
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•Impli lying

h_ = gh - x 2

From here, it follown that

Integrating

2
gh- x

= dr.

•, t + C2. C2 -oonet,

For the second ctage motion the ini%ial conditions are_

when t o = O:

Xo--__ gh, Xo -- 0

• ,-4_ ........

therefore,

= _h
g

(_._o)

Suppose x - a - h, time taken to complete the second stage motion

is calculated to be

L
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2 -_

t 2_,g L n " + in + - • ..... 1 (5.11)

In the third stage, mass of the moving chain is m = ---_(h-x)
g

reaction forces is equal to zero. Equation of the motion is obtained

in the form

V ,/

= (h- x) x= _ (h- h),m

S

Therefore,

x = Xot *L_ 2 •

Here x o is given by the equation (5.10) for the time t 2.

'1 ._2 (a - h}Xo= _ ---}s h

Obviously

Time consumed in the third stage motion is determined

from the quadratic equation

t

b

h = xor3 + -_ gt_

t3.l (_'28 =3 * 2xh - Xo).

• 1I 9.e'h - 3-e
t3= _"

(5.q2)
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Thus the time t taken by the chain in falling from the

table to the floor is

t = tl_t2_t 3

o

6. E_UATION OF THE MOTION OF THE CENTER OF THE MASS

AND THE EULERS _QUATION FOR A BODY HAVING A
VARIABLE MA_S:

Equation of the Motion of Center of Mass:

It was observed in 5 that for a solid body having a

variable mass the geometrical points of fixed system firmly

connecZus with the frame of the body represent the points of the

system. Denote by v; e and w; e the (enduria_ velocity and the accelera-

tion of the center of mass of the body. They indicate the

velocity and the acceleration of that point of the fixed system which

identify the center of the mass at a given _ime.

According to Euler's formula of velocity of points of

solid body, for _-th points we have

st +_._X C ) (6.1)

J

Here cu . anEula r velocity of the rotation of the body rj - radius

vector of _ th point and re - radius vector of the center of inertia

Since by (1.15) we have
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_ d 2" _

therefore, for a body of variable mass we get

d" - ;e d2" . ;,
d-_ rc = c' _rc c

(6.2)

Therefore, the equation of the motion of the inertial

center (1.16) is expressed as

-e Y + R (6.))m w --
9

If the position of the inertial center of the body

-e -
= where wdoes not change, then wc Wc, c indicates the acceleration

of the inertial center. Equation (6.3) will then be written as

m w = F + R. (6.4)
c

Thus equation (6.3) and (6.4) describe the mution of the

inertial center of the body having a variable mass.

Let a certain geometrical point A of the body be taken

as plus. Then according to Euler'm formula we write:

-" ;A - " ";A)vc = + _,_x (;c (6.5)

Where v_ - velocity of the point A, W - angular velocity of the body,

rc' rat " radius vectors of the inertial center and the point A

L _a
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report of the origin of the fixed system of coordinates.

Computing the de_Ivative dd_t_of left and right hand sides

of (605) we get

wc • wA + _ x (re" A ) +

On account of (605) we have

-, - . ;A) - _-
r

;A)

and by simplifying we get

W c = + _C X =0 - -" -.
(6.6)

Taking into consideration the equation of the motion of

the inertial center (6.3) we find the equatio_f the motion of the

point A of the body having a variable mass in the following form:

wA , ,.,_x ( . ;A) = ! _, ! , (j"( _ ;, .m m

f

(6.?)

Let the

Denote the coordinates of the point A for this system by (_, _1,

=Y_A,'JA'_A' L.t • _ , ._ =d .; -8Jld those of w be the

unit vectors of the fixed system.

general coordinates of the fixed system be (_,_,

)

•

L _d
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We write

_x c_c -_A_ m

The vectorial equation (6.7) on the projection on the axis

of the fixed system are, therefore, obtained as

(6.8)

Sake the pelmt A as the origin of the system of coordinates,

invariably connected with _h_ body having • variable mass. Denote

the proJec_ions of the velocity of the point A on theoe a_Ae by

Wx, wy, ws _espectively_ e_ the projections of the an_ular

t

_,_ _J]
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velocity w of the body by Wx, wy, wz¢ The coordinates of the

inertial center in this system will be written as xc, yC _ zC

respectively. We thus obtain

;A = _ + '_'x vA, HT" " d-'£.='

d t

where--_ is a relative derivative. Equation (6.7) then becomes

"I__'(_c" "rA)_

(6.9)

By projecting on the axes of the system referred to we have

,by ! x, ! _x*_b=pA- ' FA* ({_2

"_.,x_'TT c -C_:x_ z zc,

• Zc _., .ly+l_x n m y

(6.1o)

x _ 7G "_y_z SC "_x Lcy xc'

• ! A

yA + 'c _', " _ _ " • z + • % +_y_A "_,_A +

+ (,_2_+=,2>_.._,_ _,__-,_. '_,YC"
X jr _ _, _ j

If R • O, then the equations (6.7) - (6.10) are identical

with the correspondin8 equations holding for body with a constant mass.
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2. Eulorls _quation for Rotation of the Body Having

a Variabl, e Mass . about .a .Yixed Point. ....

A law providing a change in the kinetic soment for the

system of points having a variable ma_8 has boon worked out in

the form of

d---*i .. L . M,
dt

where the principal moment of reaction forces is computed with

the help of

Here H is the principal moment of the Cariliso force and K is

the principal moment of impulsive forces. In the formulae referred

to above the moments_or a fixed poise are calculated.

Suppose the body having a variable _es moves in such a

manner that the position of the geometrical point 0 does nnt change

during the entire movement. Take _his point as the orisin of the

Descartes system of the coordinates invariably associated with the

body. Thus for a body having a variable mass |o have

where, v ie, as before, the angular velocity of the rotation of

the body

$
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f

I ix - 13qf - Ixs

- Zx_, Iy - ly z

- Ixs - Iy z Is

is _he tensor of the inerti_ In contract to the body with

constant masst the axial moments, of the inertia I x , Iy and Iy and the

centrifugal moments of the inertia Ixy , Ixs, Iy s in respect of

a bod_ having a variable quantities.

From (6.11) we see that the pro_ections of the kinetic

moment _ on the x,y_z axes are respectively equal to

IX = IxeOx " Ixy_y " Ixs _z,

ly- - Ixy_ x + Iy _- I s % ,
(6.sa)

Is " Ixs_x" I_s y I7. m'

where, as betore, _o x' _' L=z are the projections of the anEular

velocity_on x,7,z axes.

On the bas_s of (2._) we have

(6.1!0

Sines tho oquations

d. d" X_) +So XL, _ (X_) T•._ (Ioo). _ x .
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holds, therefore, the vector equation (6.1_) is expressed as

I _ + I:= L + M (6.1;)

Here the notation with a dash sign denotes the corresponding

relative derivative in the system (x,y,z).

Projecting the equation (6.14) on the axes, we get Euler's

equ_tions for the rotation of the body having a variable mass about

a fixed point.

Ix_ x - Ixyt_y - • _uyl - _I = L + MxIxz _z + z z z x

Ixy_ x + Iy_y - Iy z U_z ÷ "_Zlx " _Uxlz = Ly + My,

" Ixz_UX " lyz_ ÷ lz cuZ + _I -CUyl x = L + M .xy Z z

where lx, ly and 1 z are determined from the relations (6.12).

Taking them into consideration, Euler's equation is finally

obtained in the form

Xx_, x - I_r_y - Ixz_ z + (Iz-ly)_UyC_ z - Ix,:=x,-_y + Ixy_._,x,=z-

- lyz (°_2y"_2z) = Lx + Mx,

- Zx_ x + za,_y - Zy,,_uz + (z x - zz)_x (*_,,.- Zxy_y_z+Zyz_x "-_ -

=Ixz(_ "CJ_x) • Ly + My, ... (6._5)

bk ¸ . .... _ ' . - la_D.=_*.smanm

t
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- Ixz_. x - Iyz,.._y + I z + (Iy-I x) X y yz z
- I

XZ (C'y _L'Z-

Thex_ the tensor of the inertia is equal to

I ----

I 0 0
X

0 "_y 0

0 0 I
Z

here Ix, Xy, I z are the principal moments of the inertia. The

Euler's equations along the principal axes are expressed as

lx<_-x + (I z - Iy)=cy_ z = Lx + Nx

Iy_._y + (I x - I=),._x _"_z = Ly + My
(6,16)

Z=__= + (ly- I x )_,_x,_y = L z + Mz.

l

Example=

Let us examine the rotation of the body having a variable

mass about a fixed axis of the rotation. Choose the system of

coordinates invariable a_sociated with the body. Take oz aB the exis of

t_e rotation and let the other two axes ox and oy be orthogoral

to it (Fig.lO). Take the origin of the chosen coordinate system

to be fixed. Suppose the inertial center of the body C (xo, Yc' Zc)



r .. T r- , .

-_3o-

does not change its position.

P_ic,I0

Then

¢c x =O_y - O_,z --(u; ix-- - Ixz,.u, ly= - _),_" ,

1 = ICCo
Z Z

Le_ the _eactions have the pro_ections

= (Ax, a _ &z), B -- (Bx, By, Bz).

Since

v C = T C =_x r C = ( -_yCt_oXCo0 ), Xc-COnst , yc = const_

therefore0 equations (6e10) can be written in the form

-'_7 c ""_2xc " !• (Flx + Rx + Ax + Bx),

_=c "'_?Tc " I (Fl=r + _7 + *y + s=r)m t

0 = FI= + R= + A= + Bz.

_a
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Here Flx, Fly , Flz denote the projections of the principal vector

of the active force_ on x, y, z axes.

_quation (6.15) can be expressed as

• _2 L1 x -- Ixz_C + Iy z = + E x a Ay + bBy,

2

- Iyz_" c - Ixz_,: = Ily + My + ah x - bBx_

lz,_ I Lll ÷ Mz.

Here Llx , Llxy , I'1z represent the moments of the active forces in

respect of the axes of x,y,z.

The last equation of the above system enables us to determine

the angular velocity of the rotation of the body by integration. The

remaining two equationu together with the three equations of the

previous system and the additional conditions on A and B given
z z

law of change of the mass make it possible to the reactions in

projectinns on the _xes which are invariably associated with the

body.

Euler's Equation of Rotation of the Solid Body having

a Variable Mass about an Arbitrary Point A taken As a

I to

i
i "

The kinetic maaent of the body for a fixed point is equal

(6.17)
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4

Where 1L denotes the kinetic moment of the body for the point A in

a relative motion in respect of the axes system, moving with the

point, Ao Consequently, 1 A can be expressed as a volt,me int_Eral

over the body

(;)

Im

V - VA) _ dxdydz, (6.18)

In (6.17), m represents the mass of the body, rC - radius vector

of its center of inertia, _A " radius vector of the point A;

vA - velocity of the point A; q - principal vector of the momentum

of the body.

Uniting (I.8), (2.%) and (6.17), we obtain

+m(;-cd-_ A " A)x A (6.19)

In thi_ _A; denotes acceleration of the point A and L A and MA

denotes the principal moments of the external and the reaction

forces for the point A.

In view of the Euler's formula

where "_ is_the angular velocity of the body, (6.18) can be written

in the fore

^. I_ (6.20)

4

L •
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The inertial tensor

I -I -I
x xy xz

I = - Ixy Iy - Iyz

- Ixz - Iy z Iz

is computed in respect of the system of coordinate axes x,y,z

with origin at the point A and firmly connected with the solid

body.

Taking into consideration (6o14) and (6.20) the vector

equation of (6.I9) is obtained in the form

: d,_o. _x Z _ (_C rA) x _A _'A÷ _A"dt + m - = (6.21)

In view of _he equation

= + v^,
dt

it becomes

dt

÷_o x I _• LA ÷ MA

(6.22)

,I

4
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Since the projections of the velocity of the point A on the

axes of x,y,z are _A, _A and )/A, then the projections of the

angular velocity, as before, are denoted by C_xtLCy, _¢z !

coordinates of the inertial center in this system are _ ._/ ,_,,_

Pro_ecting the vector equation (6.22) on the above referred axes

x,y,z, we obtain Euler's three equations which determine the

rotation of the solid body having a variable mass about an arbitrary

point A of the body. These are

÷ ly z (_2 .{_2 ) + ÷y z LAx MAx'

- IXy,_, x ÷ Iy,,'y- Iyz,_, z ÷ m (_r A" _A ) •
(6._3)

L



11 ....

-135-

If the inertial center of the body having a variable mass

remains fixed, then we may choose the inertial center itself a_ the

pole A. In this case, vector, equatinn (6.22) becomes

d'_"
I ÷ I LC ÷ MC (6.24)dt =

and the Euler's equations for the rotation of the solid body will

coincide with equations (6.15) in which Lx, Ly, Lz, Mx, My, M z

are replaced by Lcx, Lcy , Lcz, Mcx, Mcy, Mcz.

In case the inertial center changes it_ position equation

(6.24) and consequently the Euler's equations will hold for the

system of the axes unalt,rably connected with the body and having

the origin at a point of the body, which at a given moment of _ime

coincides with the center of the mass. Therefore, in such _ study

for each moment of time we mu_t consider a particular set of axes.

%. Euler's Equations Using Known Angular Velocity of
Rotation of t_rincipal Axes. .......

Let us determine the angular velocity _ of the rotation

of the principal axes of inertia for the body. Consider the

system of axes (Xl, _1' Zl) which, at each moment of time, coincides

with the principal directions and whose origin Coincides with the

center of the mass, which, in simple, is supposed :lot to move

in a relation to the body.

!
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Equation (6.19) thus becomes

d-_ IC = LC + MC, (6.25)

where 1 C is represented in terms of the projections on the axes

Xl' YI' z1 in the form

1c = 11
:L'y 1

_f

, II=

I 0 0
x 1

0 I 0
Yl

0 0 I
zI

(6.26)

are the projections of the angular velocit 7 of the
(_' x I , _, ,_, Z1Yl'

rotation Of the body on the principal axes, inertial moments about

Iy 1which are respectively equal t_ Ix1 , , Izl

d"
Because the derivative _ 1 e is obtained while securin_ a mass

of point_, for calculatin_ the left hand side of the formula (6.25) we

must, therefore, consider the singular vectors of axis Xl, Y1, z 1

in formula (6.26) as irreversable in relation to the body.

Consequently the derivative is computed in the system firmly

connected with the body and which, at a given time, coincides with

the system (X 1 yl ' Zl). We thus have

e--

diO .- .

"_t IC = _ (I1_) + '_ x I1('-_ (6.27)

when the derivative with prime relates to the system firmly ccnneoted
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with the body.

We now turn to the differentiation in the syBtem (xl, Yl' Zl)

revolving together with theprincipal axes. According to the formula,

we write the coupling (relative) derivative_ in different systems

(I 1 ) = 11dt _
+ O.x _ ,.,., (6._$_

I

Projecting equation (6.25) on the axes x,y,z, with the

help of equations (6.2") and (6.28) we get

_1 ÷ (I - I )_,y1_ ¢ + I - Iy1_ _e =L +MIx Zl Yl Zl Zl_YlC_ Zl Zl Yl Xl Xl

zl)(cXl(CZl * IXl..%'_.z1_OX 1 - I , =Lyl÷Zl_-'lXl_L'Zl My I

(6.29

(ly I " :Ix1) (Ox1'O_'.I÷ IYl_-)'Xlt"_Yl " IXl"_yl(_-_x I = LZl + MZl

Formula (6.29) furnishes the required Euler's equations.

The explicit expression6 for _x I ,_yl_ml will be considered

in section 4 of the Chapter V.

b,._ il _ _....

@

L
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Meshersky Case:

Suppose there does not occur a relative motion of

particles in the body having a variable mass. Then for all the

particles

V r m O, Wr = O, w C • O,

Consequently, th_rincipal vector and the principal moment

of reaction foroeo about any pole will be equal to the principal

vector and the principal moment of the impulsive forces

m

R =<_' , N= K

In this process, change of the mass takes place only in the points

on the surface of the body. Therefor_ we have

_ = (u- v) ds, K. i x (u- v )
(m) (m)

Here S represents the surface enclosing the body, ds - surface

element, _ (x, y, z) - density of the surface layer, whose mass

varies,

In the context of the Meshersky c_se concerning the solid

body havin_ a variable mass, the laws of change of the principal

vector of the momentum and kinetic moment, and then also the

equation of motion of the inertial center and the Euler's equations

were worRed out by ,_.,_.}[o_mo,]er_ynnnki in 1946 [33,36,35]. The laws

k.
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of motion of the body having a variable mass have been nicely treated

in a course of theoretical mechanics written by L.G. L_it_:ynn._ku

and ..I. Lug's 1_5.

@ Principal of Solidification:

Summin_ up the results so far achieved it can be stated

that the law_ of change of the principal vector of the momentum

and the kinetic moment for the bo_y with a variable mass and also

the fundamental equations derived from them have some form as in

the case of a body with conntant mass, measured for an excesuive

solidification if we add the principal vector and the principal

moment of reaction forces to _he external forces and the moments.

This principle may be called the principle of _olidification

for constructing the equation of motion. This principle first

appeared in the works of F._,..:antrl_]:h,_r:_, L.] Lcvina (i',17) :_nd

I°G. Luit_yantnko, _.i. Luro'.

7- Laws of Change of the Kinetic Energy in the System

of Points of a Variable Mass: ....

Io Change of the Kinetic Energy and the Additional Field of

Forces in the Mechani_,s of a Variable Mas_ ,

The equation of motion of points o_ a variable mas_ in

case of a relative motion of particles wasobtained in Chapter I in

the form

e-- m

dv
m_=F+R.

The reaction force R i_ determined from the formula

I
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where J is Curiliso force and denotes the impulsive force._he

summation _n the middle part on the right side is carried over all

the particles building the material point at time tl wr - cenotes

the relative accelerations of the particles whoae mashes are denoted

by m. If there doe_ not take place a relative motion of particles

in the material point, then the motion of the material point having

a variable mass is determined from the _leshersky equation

dm 1

dt = _-= " " at" " "

Xt may be observed that the equation of motion material point

in theory of relativity, viz°,

d moV v
-- /= (,,;,,1)
dt "_-i -_

where c represents the velocity of light, may be considered

a particular case of the Meshersky equation if we take

t

L

m
o

m= ._2

(?.2)

and the absolute velocities of the changing masses equal _o zero.

In this case we will have

(?.3)

$

\.
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Althou_ th_ _ve analogy is formal, howev6r, in the

mechanics of the i_.'_'V of relativity we come across LanEranges

and the Hamiltonla._ 'i_Ac_ion as well as the motion of the kinetic

energy, Therefore, the mechanics o_ variable masses is naturally

orientated towards the corresponding concepts of the mechanics of

the theory of relativity.

Let us extend the motion of the kinetic energy into the

mechanics of a variable mass. The mechanics of a constant mass

employs in place of the kinetic energy such a physical quantity

where the change gives the work done by the force applied to

the specified material point. A similar principle works in the

theory of relativity. The soalar multiplication of the vectorial

equation (7.1) by the velocity v_ gives

2
m o

O _

d _. - .... = Fdr (7.4)

- il 2

Thus in the mechanics of the theory of relativity the kinetic

energy is calculated to be

T = (m- mo) C2

Hore uas8 m is determined from (7.2) and consequently T m 0 when

V I O,

But it is futile to try to come close to such a concept

of the kinetic energy in the mechanics of a variable mass.

As a matter of fact, scalars multiplying the equation of the

. .. ......

i
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motion of a point of variable mass by the velocity v, we find

(?.5)

It appears that the left hand side of (7.5) is the total differential._U

Considerin7 F = O, suppose that the process of change takes place

with certain velocities, we will have = constant which entails

a pLyslca] hitch. It is not conv%nient to consider the kinetic

energy as a physical quantity vthich remains unchanged with the

increase or decrease of energy. In the mechanics of theory of

relativity the t_bove referred contradiction does not exit because
m

- o
when F = O, we get V = constant, _---_ = const.

i ,.,o
/

We obtain the kinetic energy of a point of a variable mass

in the form

2
mv

T -
2

so that it corresponds to the kinetic energy of the point when

the process of change of mass completely stopped beginning

from a given moment.

Relation (?-5) becomes

k.

(7.6)

i

A

Where the scalar product Rdr represents the elementary work done by

the reaction force. On the left of equation (7.6) stands partial

__ _, . .......... C±L] ,,,,, _ .....
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differential with

Expression (7.6) may be put in the form

dT = Fdr + Dtr,

m and t as independent w:riables aud m fixed.

(7.7)

where

- ,_ v (7.8)

is called the additional force or the force of additional field.

D dr is called the elementary work of this field.

v dm
In the theory of relativity D = - _, and the additional

field turns out t9 the potential because when the mass changes by

(7.2)_ we have

-v_dm-d (_--c 2) (?.9)

For a system of points having a variable mass we get

2

J

(?.1o)

(?.10) shows that the increment in the kinetic energy of the

solidified system is equal to the sum of elementary works done by

..s
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the usual and the reaction forces. Suppose the field of the

usual forces in cane of constant masses possesses potential

ener_ IX, then

4: (T-xx ) = _ _cIdrj
J

Ener_ equation (7.10) can be expressed _n the £orm

(?._1)

where

J J

J J

('7.12)

(?.I))

is the elementary work done by the force of additional field.

Integrating (7.12) along the trajectory of motion of the

system we get

J J

Thus the increment in the kinetic energy of the system of points

having a variable mass is equal to the work done by the usual forces

of additional field.

Xt is important to note that the work done by the usual forces

splits into work _Ol@ by the internal forces so that in the case of
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a solid body having a variable mass the latter work reduces to

zero •

2. Conditions of the Potentiality and Quasi-Potentiality

of the Additional Field 0f FoFces. ,

The position of the mechanical system is completely determined

by _ generalized Lagrangian coordinates qi ( i = 1, 2, ..., S).

The masses of the points are functions of times, langrangian

co_rdinates and the velocities

mj--mj (qi' qi' t)
(?.15)

We denote Lhe elementary work done by the forces of additional field

in terms ef generalized coordinates. (7.15) shows that the reaction

forces are linearly dependent upon Langrangian accelerations

k,-'l

Therefore we get

i=1 1 1

_.

....(?.17)

t

L
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If (?.17) works out to be the total differential, then the

additional field has potential. For h01onomous system this is a

necessar_ and sufficient condition.

The subject matter of section

author in his work _8_.

_4P _

7 has been dealt with by the

8. GENERAL EQUATION OF THE MECHANICS OF A VARIABLE MASS:

I. General Equation in Cartesian Coordinates:

As soon in section 5, in case of a solid body we choose

geometrical points of the body as material points of variable masses,

i.e., small material re_ions moving translationally with the chosen

geometrical points of the fixed system. Thus the mechanics of the

system with variable masses completely preserves the kinematics of

points and solid bodies having a constant mass.

The motion of the system of points a with variable mass may

experience certain holonomic and non-holonomic constraints. The

constraints are assumed to be ideal.

From equation of the not_n of point (1.2) in Chapter I and

the condition of ideal consteaint, the general equation of the

mechanics of a variable Bass follows

l Where _j

(8.1)

is the resultant active force applied on _th-point.
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Equation (8.1) hasdirect applications inthe concrete

problems and is also used in the derivation of different equations

of _otion t,n generalized coordinates.

_xample8 of _he direct application are given in _he works

of the author.

2. Qen_ral Equation in the Lang_,angian Coordinatesz

Suppose the masses of the points of the mechanical system are

expressed by relations of the type (7o15)o Then the general

equation (8.1) of the mechanics of a variable mass can be written

in generalized coordinates.

S

i-1

( _t _T aT-_ -_i""i) _i --o

Here

are generalized active forces,

(8.2)

(8.3)

is termed as s_plue forces

Denote b_.S
D

..,, S)

L
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the partial derivative_or the indicated variables in the set

of independent variables

mj, t, qi' qi'

Tak%ng into coraideration the equation

2 2

dt _qi = ---
dr _qi _qi

The general equation (8.1) can be written in the form

8

- - sqi " o
i=l

_g

_ i=/_-_ _j_-_lqi ( i= I, 2, ...,s)

represents the _neralized active forces.

(8.4)

(8.5)

In deriving the equation (8.4) no restrictions were imposed

on the functional dependence of masses, therefore, the masses

system under examination besides generalized coordinates, i_s

derivatives and the time may also depend upon the distances
r

traversed by rth point.

m_ - m_ (ql' qi' St' t) (i=1, Z, ..., S; r m 1, 2, ..., n) (8.6)

t

Therefore, equation (8.4) may be adopted under lesser limitations

than the equation (8.2)

k
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CHAPTER- III

HOLONO_IC_s_ms WIT_VaaL_SLE.*SS_.

"_. LaEranEeLs E%uations o.f the Second Ty_s.

1. Two forms of Lagranges equa_io=s of the second type in the

mechanics of a variable mass. Let us examine holonomio systems. For

this purpose, choose the generalized coordinates qi (i = It 29 ...,S)

which satisfy all the constraints imposed on the motion of a

mechanical system. This condition will make the coordinates qi

independent and hence the variation c qi in them will also be independent.

Taking into account the independence of variations qi and the

general equation of the mechanics cf variable mass (8.2) in chapt©r II,

we obtain S equations in generalized coordinates

_T _ T_-_"i" _qi _ Qi ÷ P_ (i. 1, 2, ..., s). (1.1)

The surplus forces are determined by the formula (8.3) in chapter IZ.

In the case of a body having a variable mass sum of the terms for the

values of the range _ is equivalent to the integral over the volume of

the body

Pl" ) (l÷dt ;) " "T-_qi _qi_

(1.2)

In this, | is reaction force; _ •_ (qi' _i' t; x, y, s) - is

6hairy at the point (x_ y_ s) of the body.

dxdyds.

\
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Equation (1.1) are called Lagranges generalised equations of

the second type. Ve wall discuss particular cases of the equations

(1.1).

The masses of the points will be explicit functions of time only,

Ices I_ • m_(t)t uniting relations (7.8) and (8.3) of chapter IX, we

have

+ dt qi "
(1._)

Xn the Heaherkya case, i.e., when there is no relative motion of the

particles in the material points of the mechanical system reaction

force o_ J-th point is equal to

dml_ dm2_
_ ) -" dt (_1_ - _J dt (_2J " ;J)° (lo41

Therefore, in this case,

_agrange's equations of the type (1._) were obtained by

in his york _3G3 in the year 1951.

(1._)

I

Let the absolute velocities of the changing masses be equal to

sere so that u2 • O0 then Pi • 0 (i - 1, 2, ...,6) and equations (1.1)

take the name fo_as in the nechanAcm of constant manses. This _nas

shown by l.Vo Mesherk_ In his thesis _3_ in the year 1897.

Taking into account the general equation in the mechanics of

variable mass (8.4) ia chapter IX we obtain the LapanSes equation of

the second type is the form
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d"T'$ qi " _qi " _ *_*i (_ = 1, Z, ..., s). (1.6)

Equation (1.1) nay be InmedAately tz_nsfozled into the fo_n (1.6),

but then it suet be assuled that the nasm i_Anctlons (?._) in chapter XX

are dependent.

Independent derivation of equations (1.6) snahle8 us to extend

the use of these equations to any functional dependence relation of a

_a8 of points. In particular, these equations can be conveniently

uled for a dependence relation of the type (8.6) in chpater. Add to

the equations (1.6) the dif£erential equations

_=nl" (r = 1, 2, ..., n), (1.?)
V Br

where the kinetic energ7 of r-th pointAa_d its mass mr must be

expressed in terms of generalized coordinates, their derivatives t time

an_ the distances 8 r travelled hy r points of the syeteb.

/

i

¢

The generalized action tortes for conaolldated sasses figure out

emlrimUlalgSeu

to be potentlala _ • - _ ql , and taking into account the Lagrange8

functlon L • T -_ equation (1.6) nay be w_itten in the forn

Derivatives on the ).eft hand side of equations (1.6) and (_._

are obtained independent of mass, hence,for compili_ equatio:_ (_.6) and

(_._ i_ is n_cessary to use Eagrauge' _ equations for the corresponding

proble= with constant masee_ and then to obtain masne_ and add

generall_ed _ctiv_ forces, The abo_e rule can _e confiidered a

_eneraliz_tion of the oolAdi_ication principle to be added _o Eagraange's

l_ _ d
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equations. The left portions of Lagrange's equations(1.6) and (1.8) re-

present the left portion of Lagran_e_equations in the salidi_ed system.

Considering dependence of • mass on velocities we must assume

the linear dependence of the generalized reaction forces on

accelerations.

_+k_'(qi' qi' t) q t' ÷_'ko (qi' qi' t) (k, i m 1, a,...,S).

(1.9)

Therefore, Lan_ranges equations (1.6) in respect of acceleration will

be solved only when cart•in conditions are aatieifede Actually, the

kinetic enerEy is equal to T = T2 + T 1 ÷ To, where Tp (p = O, 1, 2) is

• suitable homogeneous form in generalized velocities, for in such •n

inveltig•tion the masses are consolidated. The quadratic part of the

kinetic energy is written in the form

S

k, _'=1

then, the _ondition for the existence of the solution is that the

2. Ex••ple: Two uniform circular cylinders A and B are tied

with two flexible threads. The weight of each cylinder i• fl and the

r•di_s of the b••e is r. ._he tending •re a_metEic•llT inclined to

the •ediun (central) planes parallel to the bases of the cylinder. The

_xes of the cyl/nders •re horizontal (fig. 11). The axis of the

oylender B d_ops from the rest under the action of the 8rarity and

stretches the two flexible fastenings

The other ends of the cl•ins •re flung over ln_teeim_lly small blocks

and thole together with oon•lder•ble part of chais rest on • roush
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horizontal table. The friction coefficient of the chain is k.

Determine the angular velocities _ amd _t'2 as functions of the

displacement S moved by the cylender B.

The axis of the cylinder B will descend vertically and, therefore,

it may be thought that the system possesses two degree freedom. The

angle8 _1 and _I'2 may be taken as generalized coordinates. Let _'_10 z

The kinetic energy of the system is equal to

+ ,2 1

where S in the displacement of the axis of the cylinder B; S - (_'1

r. The virtual work done by the reaction forces is given by the

expression

_or÷2gy(1- b +S) r- 2gykb ( 1 ÷ S_ 2).

Virtual work done by reaction forces is given by the expression

- 2 _r 3 ( _1 ÷ _'2 )2 ( _ 1 ÷ _ 2)"

In the present case, La_"ant_a equations (1.6) are written in the

Q--_-÷g 2),(_ ÷ s r 1 ÷ _÷s 2y(1 ÷ s r_' 2 .

ii ii
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•

PHc. II

Figure - 11

From here we must conclude that

q

Thus a linear differential equation of the first order in _ wrt _ 1'

whioh_ is dete_ined as a function of _ 1 or as aia obtained from

function of displacements S.

Zn the work _8_ of the author, another ez_ple is discussed to

demonstrate the application of the Lagrangel equation of the second type.

t
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Q LaKrangee s Equations Together with LaRran_ete

Function and Cannonic&l Equations _n the

Mechanics of Variable Mas s .

1.

Conditions for the existence of the generaliz6d kinetic potential

of the surplus forces. Generalized surplus forces Pi are linearl7

dependent upon the acceleration, and therefore, we apply on them

conditions _01, 111, 11_ for the existence of the

generalized kinetic potential.

_P.l. . _Pk -0 (i, k = 1, 2, ... , S), (2.1)

/1

Yhen conditions (2.1) - (2.3) are satisfied, the surplus forces

are given by

where

(2.4)

denotes a function of qk' _k' t.

We will show a method for the computation of the explicit from

t

the function _ vhen llelmholtz conditions are satisfied. The method

w'tI1 be fa4rly similar to that explained FIayer Cl1_.

Ve _,11 find the function vhich satisfy the relations

t
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(i, k._ I, 2, *-.I S). (2.5)

Applyin8 condition (,?..1)t we have

e-*_ .

" (2.6)

We will prove that the equation

8

k=l -b_k d_k " k=l
J e I

ik d_ik d_ i" (a.7)

holds true

Here d_l ia total differential with qk and t e as fixed. From the

condition (2.2) we find

, _ Pk _ Pi _2Pi

( b_ _Pi ) T_2Pi

subtractin8 the second form the first we get

_2pl _2pl ). (2.8)

Applyins (2.1) to the left hand side it becomes sero, and we obtain

the equation

(,%9)

in the form

t
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_'l • '_i (_k' qk" t) + co i (qk" t)/

where _i are functions in variables qk and t.

(2.10)

Denote

( SPi ZPk (__i Bz k ), (2.11)

It will be _hown that the functionsj'Z ik depends upon Lagrangian

coordinates and time only. Diff,,rentiating (2o11) wrt Lagrangian

coordinates, we get

Because of condition (2.3) right hand side is zero for, in the

oppo{lite case, left hand side of (2.3) must depend q_ . Pk are functions

of the LaK_an_an velocities, coordinates and time only and linearl_

depend upon the second order derivatives of the Lasrangian coordinates.

have

Differentiating (2.11) in respect of Lagrangian velocities, we

From condition (2.3) we get

_ , _Pi _ Pk _ _ _Pi

(2.1_)

Combining (2.13), (2.14) and (2.10) given

^{

I

k
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Taking into consideration (2.5) and (2.6)t we find

c_2Pk

From here evidently follows

Formulae (2,5) indicate the character of the functioue _(_i with

regards to its dependence on the Lagrangian velocities and its

dependence on the La_angian coordinates has not yet been explained.

{

4

I

!

I

q

_i bcl' k _Pi __k ). (2.1_)

Equation (2.15) together with (2.11) are equivalent to the

following equations in terms of the unknown functions it

(2._6)

_quatione (2.16) can be written in the following tabular form

!

_'_'._._L. _ ÷.._.
2_' "*" ' -0q.q _ q2 25'

• • • O • O • • • • • • • • • • • • • • • • • •

/

..... ,• ,,,b

{

\
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_c S-1 . .
-_ q8 _ qs-1

S-lSo

Funot£on _ S is chosen arbitrarily; from the last equation above

find _c8.1 and thus proceeding all the remaining functions will be

determined if the following equation8 are satisfied

__ + ki ) ,, __ !'b
q'_' -_'_-k ",_qi _qk

(2.17)

!

It ie easy to see that conditions (2,17) are fulfilled, For

values of i and _, and large k we will suppose that equations (2,16) are

satisfied and hence the conditions (2.17) can be written as

"'0 qi _ qk _ q _ ik
q

(2.18)

It will now be shown that relation (2.18) holds true. l_ut the

(_.19)

Left hand side of (2.19) can al_o be written in the _orm

(_._o)

Applyin_ condition (2._) we have

.4
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Therefore, left hand s:Lde of (2.19) im equal to double expression

(2.20). From here follows the validity of (2.19) and, therefore, o£

the identity (2.18).

NOW we will look for a function _ which 8atisfi_d the conditions

_ =. _l_i, ._e = d

Xf it is powsible to find such a function, then it will be indentified

and characterized as potential function for values Pi

We rill prove the equality of the corresponding orose derivatives.

_i and _ _ are equal because of (2.6)e| ii i

Partial derivatives _ _k _i

Further we have

_q-_ " _qi -_-_k + Pk) "

"" _ "_qk " _qi " A ql "
(z.21)

As a result of (2.3) and (2.15) right hand side of (2.21) is equal to

seroe

We have

Zt remains to nhov that the relation

(2,22)

(Z.23)

By (2.15) and (2.2)) relations (2.22) are equivalent to the equalities

t
.4
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• 9 Pi 9 _'k 2'_f k
(2.24)

Relations (2.24) hold true b,,c_'|;_,se rJ_ (2._.) ,_ud (2.5).

9he l_uaction_is vbtained aB ourvili_ear integral which is

independent of the path of inteKration

possess the generalized kinetiC potential O (qi' qi ° t), toeo

_amonical equations. Suppose the generalized usual fo_ces

__U

3q¢

Zn this ease when oonditionB (2.1) - (2._) are satisfied the general

equation in the mechanics of a variable maaa (8°2) in chpater lZ for

the holonomio systems may be written in the form

(2,2?)

where L e • T ÷ U + _ is known as the genera_ised Lagran_e8 function.

Take

lnte8rating (2.2?) from t 1 to t2_ we Ket

i • I • O t then we haveqi h qi

I

n ,is d, _.
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t 2

t_1 L'dt - O. (2.29)

(2.29) expresses the general principle of Hamilton

9 In the mechanics of a special theory of relativity the I_agranges

function is determined artificially (withou'¢ taking into consideration

the force function is potential).

form -

It is siiply constz_acted in the

(2.3o)

We find the surplus forces for the point of variable mass if

its mass and the reaction force acting on it are determined by the

formulae (?e2) and (?,3) in chapter IX. As we _ave seen, in that case

dm . therefore by (8.3) in chapter XX we get
" "2 'at' '

v 2

'_q.l
(_. " 1, 2, 3)-

By (7-9) in chapter, we have

v2 c_a "_"-r-_ "_ c - _.

(2.31)

(2.32)

F

Applying (2.31) and (2.32) we obtain

Pi . _ _ 2" W c _I "'_)- (z.33)

We may consider the function e_ - mG2 in place of the functionP .

It is evident that in the m¢chanlcs of the theory of relativity, ther_

exists a special Lagranges function, namely



-163-

(

L1 = m_e_ = mv 2 . me2,

or

L1 ,.. moC2 _ .. /_2 (2.3_)

Hamilton'B principle gives the Lagranges equations with the Lagranges

functions

d BL' 3L'

and the _oanonioal equationl

BH, d BH' (2.36)

Where the generalized Hamiltonm function and the impulses are equal

to

_L,_! " Pl(ll " Llil Pl m o_Tl.
(2.3?)

When the conditions (2.1) - (2.3) and (2.26) are satisfied, an

equation in Hamilton Jacobio partial derivatives may be constructed

and Ja¢obic method of the integration may be used. In view of the

formula (2.28) for variation in the action function and the

_emnonical equationI (2.26) it it possible to generalise other relults

of the holoncmic symtem and, i_ particular, the theory of integral

invarianem and the contact transformations.

2. Mo,tion of tha Holonomio 8_mtpm with Constraints,

De_endinR on the Procemm of iOhan_o Of the Hams.

The motion of the mechanical ayatemm with oonstainta, depending

on the prcoeam of chamge of the mama wam discummed by the anthor in

I

.1

._T L J
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hie work _.

1. Equation of motionz _f the hoZonomic constraints are

imposed on a aechavioal system, they. evidently depend on the

cartesian coordinates, time and the mass of points. If masses can

be represented by the functions of the cartesion coordinates and

time t then we obtain new equations of the holonomic constraints in

which masses will be substituted by the functions.

Let us-choose a set of independent Lagrangian coordinates

qi ( i = 1, 2, ..., S) identically satisfying the new equations of

the constraints. In short the constraintS, are assumed to be ideal.

The general equation of the mechanics of a variable mass (8,1) in

chapter _X, viz.,

L__ (=j F_, - _j- _j) _j • o,
j J

in which the reaction forces _j consist of the impulsive and

carioliso forces and the constrai_ with relative accelerations im

written as

:L=I 2

where _"i = _ _J _? ql are c.lled the generalized reaction

forces. The prime on the symbol ._hows that in order to compute the

2 2

generalized forces it is necessary to take into account the virtual

work caused by the depend,mnce of the coumtraints of the procesLof

change of the mass. Thtm gives us

\
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(3.1)

Here TD (mj, qi' qi' t) denotes the kinetic energy of the system.

TD = _ "_-_ ":Iv (qi' qi' t)-
- j

As has already been said

(3.2)

._i_-and q-_--i are the partial
d"

derivatives for these indicated variables and d--'_ is the total

derivative in respect of time. These are calculated under the

steady mass mj as expressed in ().2). Considering that _qi is

independent of (3.1), we can obtain the lagranges equation .f the

second type in the form

d" ";'D _'_,D,. Q_.. :'r.. (i .. _ 2 S) ()o3)

In terms of regular derivatives the above equations can be

d bTD _D

- qi ,, QI÷

written as

where the additional generalized forces are equal to

Pl " (_ ÷ ;J) ?qi " "_%

i
1

2. Example: As an illustrating example let us investigate

the rolling inertia along the horisontal rough plane of a three

_heeled trolly whose wheels are made of sparkling and absolutely

flexible strip (land) of thickness h and the lineaF density _ ,

Suppose the planes of wheels stay parallel all along the motion. In

such a case the troll_ will move £n a straiEht line along a certain
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The kinetic energy of the trolly is given by

C_2 2 ')' _Z .__t2= +t2 , ..
z

where m is mass of the trolly, I is the moment of inertia of our

wheel for the axis of revolution; z is radius of the wheel.

If the unwind when the trollw rolls, the mass of the wheel is

given by

dm

where I is the initial length of

that

m

we get

----- I2 h (I - x), i .- -
i

It is easy to see

0,

The system under consideration has one degree f_eedom.

the coordinate x inplace of the lag_angian coordinate.

(3.2) gives

m(1 +-_----- )
TD s 2

_:2 _2+-p- •

Consider

Then formula

,_he particles of the land which get wound, leave with a relative

velocity of zero. Moreover, there is no internal motion of the

particlese
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As such the reaction forces are not generated. The forces

of weight characterize the active forces. If the radius of the

wheels do not change then the virtual work done by the force (of

weight) is equal to zero. In this case

- m_z_ - -
- X

therefore the generalized forces give

cX$

2 __ 11/TT--_x •

For the coordinate X, let us construct equations analogous to (3.3)

- -_.-_-_-+31 h _ (l- x) 2 = 2 / _- 1/1- x

In short, let us neglect the mass of the trolley

m : mtrolZey + 3m b R mtrolley ÷ 3 _(1 - x),

mb z2 _/h
Z - 2 = "2_', (l - x) 2.

then we obtain

d 2
------- ÷dx

[h ÷ 2_(i - Xi]i 2
I i

_I - x

h_ 6_Ci- x:_ • C3._1

integrating (3.4) we get

12 . i - x .*2(h + 67ri)5

'
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3- The princi_le of consolidation for the holonomic systems

with constraints, depending on the change of mass: The earlier

discussion _ows that the lagrangian equations of the second type

(3.3) can be adopted to the corresponding system with constant

masses if the system preserves the complex kinematis of the motion

due to the change of mass, and if the reaction forces also act on

the system

Hence, for holonomic systems, dependent on the process

of changes in mass, the mechanical system under consider_tion,

will serve as a stat_ of solidification, where beginnin_ from

the _iven time t, the process of change in mass ceases and

_here the same kinematics of motion are retained ( the same

ch_ngable connections) as the system with variable mass under

study.

JiJlllJNi0...o..0._o

b---. ¸, - •
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. The S_stem of a Fixed Composition with Realtiv 0

Motion Ofll the Particles Considered as & Bod_

wlth, a Variable Mass.

The next three examples will illustrate that it is possible

to consider a systel with a fixed composition and the relative motion

of the particles as a body with a variable mass. Tbo _rangi_n

equations in respect of a body with a variable mass will _escribe the

mo_ion of the frame of the system.

lo First example: Let a tube of the mass m1 and length 11

revolve on a vertical plane about its own end O. There passes a _od

of maas m2 and length 12 through the table. This arrangement makes

a holonomic system with two degree freedom. Take the angle of the

revolution of the tube and the relative displacement (translocation)

S of the rod as the Lagrangian coordinates. Then the kinetic energy

is given by

1 m 1
+ m2 (S ÷_)2 + __121.._ ,_.2 t

(4.I_

J

The potential energy is

-1

1,II-- - _m_l i ÷ m2 (s +_) s sin_. (4.2)
L

W_ then obtain the usual Lagrangian equations of the second type

_,, ,i .... . , ....
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. 12
• s sin _'. (_._)

This problem can be looked upon as the pro_!em of rotation

about a fixed axis of the body. Although the mass of the body on

the whole remains unchanged, but certain geometrical points gain

additional mass, while others lose it.

Such a body with a variable mass has only one degree of freedom.

The angle _will work as the Lagrangian coordinate. The kinetic

energy of the body is

_r = ...... ÷ =2 (s ÷ 2 ) ÷ "'_.-"". _-2. (_'.5)

The potential energy, as before, is given in the formula '4.2.). Set

up Lagrangian equation of the second type

+.

where "_I is the reaction force. The star means that for the

I

computation of the derivatives it may be supposed that the body with

a variable mean considered as _artial derivatives in which the

variable Sia regarded constant. Therefore, we write

*d-"__"-_N_- = + m2 (S , >2 ,. (4.7)

The generalized force is equal to

" 2 , m (S + _---- g cos , .

The generalized reaction force characterizes the moment of reaction

forces for the point O. We will thus have
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(4.9)

The impulse force_ie equal to zero on account of the conti_Qu_

change in the velocity (speed) of the rod. The relative acceleration

of the _od is directed along the axis of the tube and thus the

moment of this acceleration for the point 0 becomes zero. The

moment of the reaction force is made up of the carioliso moment

only.

• S, c_= we getSince vr _,

0

Integrating we obtain

*_= - 2m2_ _ (S + 21--2). (4.10)

Applying (4.7), (4.8) and (4.10), equation (4.6) takes the form

(4.3). In the mechanics of the systems with variable masses,

internal motion of the particles is a common feature. The conditions

of the problem are such that they will make thc rod move under the

action of gravity and the centcifugal force caused by the rotation of

the body. The realtive displacement of the rod is given by the

equation.

s. g ,in . (S,

Which-is the same as equation (4.4).

(4.11)

I
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2. Second Example: A hallow circular cylinder half filled with

ideal liquid revolves round a horizontal axis which is the same as

the axis of the cyl%nder. Let I1, be the inertial moment of the

cylinder and I2 be the inertial moment of the liquid. When the

cylinder revolves the ideal liquid remains motionless, therefore

T
m -_ 11 _ 2 and the usual Lagranges equation of the second type is

wirtten in the form

The points of a body with a variable mass are regarded as small

regions (geometrical points) of a fixed system firmly connected with

the frame of the body. The kinetic energy of the body is given by

:, I *I 2) f a.

The Lagranges equation of the second type is

. •

(I 1 + X2) _ = Q_+ _'_;.. (4.13)

The liquid remains motionless in respect of an absolute space,

therefore, the relative velocity is equal to a portable velocity taken

with a negative sign.

Because th_ Coriolis and centrifugal accelerations pass through

the axis of r_,tation, the moment of reactive forces are the total

particles from the axis of rotation and tangent compounds of reactive

accelerations, taken with a negativ_ sign an,_ multiplied by the particles

of vectorial produc_ of distances (vectors).

I

\ _J
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We thus get the basis vector

" c4.14)
Formulae (4.13) and (4.14) yield the equation of motion (4.12),

3. Third example: We will investigate the rotation of a glass

partially filled with liquid about the horizontal axis which ia

perpendicular to the axis of the glass. When the glass revolves

relative velocities from a complex field. The liquid particles which

are close to the center of the boundary surface of the liquid shifts

in regard to a fixed space, therefore_ the particles which are close

to the bottom of the glass have zero relative velocities. The velocity

of the liquid particle is equal to the sum of the portable velocity _e'

the present velocity of revolution of the corresponding point in the

rigid system and the relative velocity _r" The square of the velocity

is equal to

v2 = 2 2 + 2VeVr cos (_e' _r )Ve ÷ V r •

In short, suppose that the cross section of the glass in a rectangle

and the relative velocity _r perpendicular to the axis of revolution.

Let _ denote the position vector of the point where the axis of

revolution meets the plane section of the glass, which is perpendicular

to the axis. Since cos (_e' A _r ) is equal to cos (90 ° + _, A_r) , and

v e = r_, then

2 + a (_ _r) £.v2 - Ve2 + vr

Here b _d the axis ot revolut_Qn of the glaos.

i
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The kinet£¢- energy of the glass and the liquid is wirtten as

I (_') represents the moment of the inertia of the glass and the liquid

in respect of the axis of revolution, D_ is liquid density, The

integration is carried over the entire vclume_ the liquid.

The glass has one degree freedom and its position determines

the angle of rotation _. The liquid possesses infini_ degree of

freedom. The relative Lagrangian velocities (possible coordinates)

enter into the kinetic energy through.

The usual Lagrangian equation of the second type for the

coordinate is written as_,

d z(N ) + at,dt

-_- _ Q. p_____ _r)_d._. a_.
" - r- d_

Last term of the laft hand side can also be written in the form of

• r d_ _r ) _ d" /_" dt °

Thus the equation of the mo_.ion is obtained in the form of

Now we can consider the _lass with liquid as a body with a

variable mass. The Lagrangies equatio_ of the mechanics of a variable

mas_ will take the form

z_.Q_ + _..

I

• -- - i r#
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A

The generalized reaction force "_ includes moments of C_riolieo,

moments of impulsive force and of those called relative accelerations.

The Carioliso moment is equal to

zero t we get

Since the last sum on the right hand side is equal to

We know that I = m _ _ .

Here

m _=-(_ _r ) .

dI /_ -- dt
Therefore _-- 2 __tory r d_-- .

dl 2 (4.17)

Now consider the moment of reaction force and of those called

relative accelerations. For relative acceleration we write the known

formula

"--"Lr " _ _ ;r" (4.18)T___ - dt

For the remaining part of the moment of reaction forces, use the

expression

S', ._m d;r + m_(c_'× ;r )dt (4.19)

As in the cast of moment of carioliso forces, the second term on the

right hand side is directed in the positive direction of the axis of

revolution and is equal to

/_ m_ _ (_ ;r ) - +--_ c_2S.
(4.2o)

L

t
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Using formulae (4.17), (4.19) and (4.20), we find that

" (4.21)

Writing(4.21) can be used to transform (4.16) to the form (4.15).

equation of the motion by the method of the mocha:tics of a variable

mass is simple.

The liquid flowing out of the glass does not affect the additional

reaction forces; for in this case there is no impulsive change of

velocity in the particles. Therefore I the equation of motion (4.15)

also holds in this case.

d
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C}IAP'2.;_:-IV

l" rc.fn _ #,"};CqI-IJuLOI:t;I<IC_ .. _I.,_WITH V'.,:_I.I,_L]_ I'./_,;,,.:,S

• F u2,_':n ,n .I '"" ' ".u:_t_on.. of i_otion

I. i;,'[U,_.tiq"l_S with unr!e._,,rmined rlu!tipliers of r_;.:,.ctions

of the ide:11 non holonomio c'-n, trr into in the _echr.nin:; of a

variable mas_. 3u,?-,o:_o the ,_otion of a r_.echari_-.:.lsystem whor, e

_o_ition is CO'_II" '.6']-3, " det.,-;'r_in.,_ by 3 ,.,.--,,n.ral'zed nr the

Lagz,cngirn, coordinl_t.-n: t I , q_,,_ "'*' s is subjec_l '

!-enernlisc( velocity c:,n;:_tr:-.intz :,'hich '.re linerr :_nd non-bolonomic.

-I
= . .,^':._! + = O, 'Xi{j "-'_l',j(qi' t)Fk _._=-1- Zz i 'di',o

(k = 'I,2, ..., r; j = O, I, ..., z). (1.1). ....

The e,uations of motion of the systems (with v:_riable ma,.n,,os)

_ubject to nou-l:[n.'ar and non-holono,,lic eon_tr;,ir, ts wo:,'e di_cu,;:_e]

by the author in this works _61_.

The oon_traints (1.q) impor:te the following conditions on the

vmriptions of the gener,nli_o,l coordin:.te:_.

,'ki ql 0 .::).....

!

!

k.....
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or

•- -. "k - 3)• e,:. - O. (1. . ....

'2h_:,,fore, _nl,' I = ,;-r, v,riationr, ;,'illbe Ln'eDenc:ent.

i.ultiply re l" tionn (1.3) bs' un _:t,_rmined multi._liers "" k'

t:.ke th.-ir :u_m f_nm I to r nnd nubtr',ct from the :,u,','alo_,ur,tion

($.2) of ch:pt,,r ]_[<. '.e tl_u_: !" t

= O.

(1.4) ......

.,,:intothe e.u:,tion,,_of c_urtr.-Jnz (1.1) ':'o in,qe_e:v'ent, the

r_ud: of the m. trix

", .?F k _
"' O
,- _ (k = I, 2, ..., r; i - I, ,., ..., s) (1.5).....

is e,u_l to r. The order det:,rmin:,nt of the matrix (1.5) which

is different from z, ro is in tee'ms of th,_ gc,n _'nlized v_loeiti_-n where

i = 1÷I, 1*2, ..., s. Then the rel_tionn (1.3) may be solved in

r,,npect of v,_iatioas_,_q!_2, "''' _'qs' which :'..'.'oobt;,J_le(lns

line_r functions _ q1' _ q2' "''' _"qs"

Chinese %' "' % such _ wa? theft the exp," .:;ions in
'1' 2' "''' k

-/

\.
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_ql÷l'_q].+ ;'" "''' ;qs of equ'tion (1.2_), corresnondi:li;

to thc de_e_ident w, ri;,tious _k become z_ro: thi:J situ tio:_ i.'_

the c:_'._e10ec:',use the deter,_in:.nt with - is differe!_t fro':l v,ero.

In vie_ of the indencI1,,_ouce of tl_e v:,ri:,tio:ts _q1' lq2' "'''

ql the ,.:xnr,,o;_ions in the rom:_inin, tr'rl:_sof eq'_atio:, (1.4) uu:_t

'.)ezero. Thus :re obt'_in eo1_ntiouc, ,,,'it!lundetor_:in_d uultipliers in

,.O,'._J 0 ,-,

_t

r ..-_/1

•_ ,,, -_"2 p. "_, -._
"---'= ...... = _i ÷ ÷ ' " -.

i
]:--I

(1._) .....

The ,'qu_.tio::s (1.6) :_i!l '_" so].v,,l to',t:_r 'Lit!, th_ :',mstr:'in_s

,_:;u'" ti,.gn_ (1,1),

Ai ,_-, x, "o%
(1.7) .....

wll_tes of (!: -- I _ r) C':n be o',t: in:'d n,'_

an .... _llcit exDr,:s.'_ion. ;xpr,_:.: t}__ cons_r:_'nt ,'Auction [n t'_r,_c

of the cnr:onioal vnriabi_,s qi nnd ul, _:h._

n. = ---- (i = I, w, ..., ,_:_).
"_ ()qi

k.---_. .___-a_ _
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.;o obta_.n _ con:_tr J..,_.t ,._,-.u.:t-io!:_ in tl_c for:l

l,',. (c:i, _i' t) -o. (I._,)

,._iffr:r,nti::t'.-- '" (1. q) ',m :,_.t

",). ÷ - (I. ÷

I=1 i--1

= O°

In t'_s _ut t'.,e "¢:d.u:'s ,_f n. ,._o_', (1.6).

/ '" ( ...... + '_i ÷ 1' + _ff .....
/--_ -_ Pi Dqi i ,.,i__J '_qi
i=I _ =1

/_._ -_!i _li÷--_-t_- = 0,.
i=1
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This ci-es

/ _, Dt
¢ --I

(I.9).....

-:_-, >_k "_;"

Ak_, i--I"-- _'Pi _" _li
(_.10) .....

DF k

Dt

"-,, ' ' Fk / "b'J-' ""
" " --------+ '"i + Pi'_Pi i ?qi

i--I ./'

%" ,.i .,.
Jqi t

i=I

(1.11).....

Fk

Dt
;,:',,i,'er.tified :,s deriv:,tiv_,r,of the

conr:tr:,int equations in ct:ze of free _otio_=, th.tt is I motion

without the inf!uen_e of the c,,nntraints(1.1). Cn the other hrnd,

DI.'k

if the cnnstr,_int:_ act on the notion, then D---_-" wnul,_ repr_.:ent

the orr'inarM _:ariv.,tive_ in ":","poet of time an_ will t_:nd to nero.

L_,t us suppose that the detormin.nt of the matrix Ak_ is
$

di'fm'ent frnm zero. We will show that the mec.hnnicnl cy: toms,

subJ.ct to the constraints of the type (I,1) th_r_ determinant i_

;,lw_,ys diffcr.,nt.frcm zero.
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The exprez_ion (1.10) can be re-written in the form

\,s, _ F_ _pj -0Fk

Ak_ ,"., "bPj _ql "_Pi
• i,j=1

. (1.12).....

trix of coefficients _, c;/; be written as the
Therefore, the m:_ ,. K,."-IIDs_,_[

nroduct of the three re:trices I viz. _:atrix IL_ving r rows ana s

columns_ sqn_re n1:,,trix

Ir _2 T _r
_i-[I'_Pi !_ i .:-- (i,J = J, ?, ,.., _),

_],qj oq i ,,

which is !,nown ;.q :',_ositive qu," _'_tJ¢ form, "n_ fin:'lly a

matrix with s row,,_ and r columm'; which Js the tr_:u_fo_ of

!! .J!
the mntrix ,;--_ •

/i _PJ ;i
p_

'r "2F_ '
The rank of the matrix ::--_-_'--- is eHual to r which

/._ ?pj ,
follo'as fro_ the line',r ,!epen,'enco of

D(FI, _ ..., F ) _ __

DCq ' qi 2' "''' qi ) ......'
ii r I _J1-_ J2. _ .... :Jr: s

X
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D(_......._2 F ) o(Pj ' Pj • ""' PJ )
X I' ' "''' r I 2 r -_ (1.1_) .....

Since, by rmm_osition, Fk :r._ ?.ine:rly in:_ependent in r_pect of

n ....lized velocity functi,:,ns, then for qi I
......I..- , q_ , ..., q, the

Ir

r,.,t.:_.'r:innt

[

r

_-- D(FI' F 2, ..., F r)

_(qi ' :_z2' "'"' qi )
1 r

will be difr.r,_nt frm,_ ;;,'_.',._.fh,_,r.fore, o,-_the b_,_i,'_of (I._3)

it ?'_l!.ow._ th, ._ the _e _.....".... _ p. , ..., r,, for
_. ......... t__., nt PJl 'J2 3r

"" , pj ' .-,, P )D_pJl 2 Jr

Furtb r, r_,king the. tr:_nnforrl:,tior

k_-I

k(i = 1,2, ..., n),

_'_ f_n,l t'n" t the ro,_itive qu,-;r:,tio forr_
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i,j--1

i_ O_ _:.iv_"l('_t to the (u' ,"t_c f,_rm

r
• U (1,14) .....

S.iuc." the r,n!.', of the m,_.tri:;

i!...........k (k=1, ..., r; i= _2, .._ ,.'_)Bf

i._ .",u:_.l to r, the form (1.14) will be ] ' _ ' " I J 'C i '[ _ " "_ " _ _ "._,te:'",i_e,:

end the Jt-,.,.::i:'.::ntof r::_.tr,ix '_k_, is ' _ '. i ":"(_1_%.

_;olvinc e,_u:,tions (1 _ for %• .._ .Ct, ; e get

DF k
"" 3,,k

k--"I

Dt

"" ,3c(k

k--'1

"-::'" "" k ,"2'r

..... "D'Pi ?qi
i=1

i=1

+ 'Qi + Fi) +

(_.15).....
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I _ t,,in t _J_k

/! li•(_nv,_rc <_f ""l',u

•"_l':.',uln (I.'I r;) ._._ .... ' ":

- ',,:_:,t, t_<: ,,l, ll ni'._ r,f t.h<, i nv. r. (, r'r:tr'x

i i
r) in t<H,mn of

o....,_, '_i-' t P,! Pi" ,he;' _':_icSt ,.;_* ..... -i_,n, "r,_ ".bt:'ine_ with

I,,,. ::el_ ,f (1.7) ?o_' the u:" ii;'e: f:,'c of tli_; r, _('ti,'ui'_ of

' _'" / '..... ].U' ,_f ' l._.ke tl_,_:ethe: , _n-: clnnr_;ic c<-n:'i:,'.......... :., , <. .
1 1

ociti,?_.',:,n _ I';'I_':fly ,_, the ::(,c<_I(Ic_,:,_. :(:riv ::iv,_: of the

,,.r_'nl,,i:n cnm_'(l'u, t:':', ]]7 the rum ,of Force /
_i + P + _ "I'

.... t,i,. c¢)u itiohn of '::i. _.,:nce c,f the "in.,tic rotenti:_l,

;:hen e,'u:'_tinnn (_ .6) .,',n h,, _,r.itten in the l.r._y'. ::s;i',n .<"o_-,,....

S'u'ti_u_ (1.6) _,':,'rb,, tile _"ot:ion of :'_bolnn,_mic r:y:_tem _,_'ith

v,ri.-:hle m:_.r,,z _!lieh ch_n3o, :r in :> uon-]*,olnnor_ic my ter._, if the

kin_.tic ,'n(.rcy T of the :;y.'tem ;:n:_ the rum nf the :,_6:_:'aliz_._

,,n,i _ur_lu,_ forc_._ is e.,_i:,lto "i + 1-' +/ t:nly tbo:_,, t of
• i i" '_

.moti_n:_ wh._:e initi_l eoor,:itioi:m s:,ti_f:, the r.lntions

_me ch,_ractmrized by tr:,jectoriea of non-bolonomic :_y:_tem.

i

I

#
i

When the contritions of the exi'_tenco of the Fenernllzed

kinetic ?otenti,_l ,_re c:ti:_fied, _¢e ma_ apply the theory of the

cano,_ical equ:,ti_ns, the method of Jacobi¢ integrztion an_ m_+ke

the expre,:_ion of the int,.,gral inv:_riants for :_uxili_iry holonomio

nystem. Hoverer, for obt,_ining r,_nults in the c_e of non-



• •. _. _:_-__7-_-.-;_c_.::T_ : .-;_: _v- .:A̧ - _ ..._-E__--2_._ :_ ........... -....

_.c)l.,u:,;_Icry t,,,,,it in n.','_:_::ry to t:,he into ::recount (60).

l • o °. --

.m'_po_;'" tb,' ,_'n;;'.1":,int,",I,'_lii,n:',(1.1) j '.,ntj_:,lly

'" _,_,tthe ] ir ar,,,t:,'ionn.

(.T I ,.';)• le • m •

(i- I, • ,P, .. :_: J = O, I, 2, ..., 1),

where

or

-*'*i ,_ '_",. . (_ ._8) .....m,

_ C_:l. _, _e v

Vnx,iation,_ #- I' _ '_2t "''' " "DI ar_-' i_.lepon,_ent.

Proceeding from the _,ener_l equation _f the mechnuien

(8.2) in Chaptel" II, _,e ,_,et _ nymmetric equ;,tinns in the

form



'T

6

i=I

- ] +¢) t

,! ,'W ..._y ",'_'! i..... I ) ...... --_("
It _i "

"A_i "_qi 1 _e v

, )

(1.10) .....

[t_itin:- (1.I0) .r,,' (1.10) ,-_,!_,I..;_ -, .:. tin, cont:,i_lJ_i, :: + 1

ele"', "''' el; ql' q_', "''' '"S"

7

;;u',tt¢m:_ i;t th,, ymc!v,nicq nf v;,ri:,blo m:',_:. '.,_"will d#not.e

by _' tile t;,.tic en,,rg:,'!'[\'on in t{,rm_ o£ Or, qi' %( I, ...,

i; i = 1, ;', ..., ,_:)by the r,l:'_i,m,'_ (1.16). ,,, i];c:n nbt:.in

" L• -, r_ ", _ ",','i' ' '"
• - . ..... (1. :'o) .....

('" 1i=i ' __j ',-o., '

= + \._ "# ":" .i

"?qi '-'qi 3_4_' "'_j Dqi

(1.;:1) .....

4

dt

3r,u_;tions (1.19) :_,'__:rj.tten in the form
' ¢t

8

• _q_ _e ..... .
i=I _ i=I

%4 _' '. _ "? r
.o

_' . --_ _9,

÷ G

_J
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',.I]1( '1' 0

• t' ,"' _ '/'"i'_. = " , "i i '. z i

'.l'e ,-',nt, r,,].iz, ed :.ctive _,n,! . .:,!._tJ,,_L_.l t'_'c .... , ..; ,,r_'_il'lo for

the l:inetic :....i'm_c.':_g,..

'2,'_"int" i:_t_ e".rl:'i!(.'_'_,Li"l' (1.."r_) ,'nd (1.21), o,.i_ ti..m,_

(1.2;') c_,n }_ tsvitt.,_n .".:_

'7)_o ooooo

dt ,De .... .-" _qi ',_e_
i=1

8

i=1

' . ? qi

dt ,'bq_ ._-_' ?qj
J=1

• •

_,'2z_

Lot un t_ut

(q.2_).....

where the partial (lerivativet-_ in r,,spect of qi are co,:_!_uted

for the ,_,.t of variables

e._, ' qi , t.

+ G
° I

l
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J!' u ?,,I'_, ,,.,. t

%" %, •

( I. ?t',) .....

_"_!_.tJnl't):r I,'.,_,_ ', :/':i.,'._n _;p_,T",tnr,

,4

Unil:g L , for the. I: r;:nFir_ oge,': for, _.,,,_.,J'it_('I.,.'6) in n
e.%,

,..,, . .
'i=I i

...... Le (_Ii)-= z,,. + _

The co.'ffici,.mt::

d , i "
(_,) = ..... - ..... (I.::7).....

Le -_ i dt "De. > "-

nre l:nnwn :,n !;in,.m:,.tic vnlu._.' . The:=e v;,luem ,'eDen,_ '_nly on

the selection nf the hinetic r,:_pnn_:_ (chn_rrt_rintics) nmd

_,_t nn the chnr_cte_:' of the mech;_nic:.l nyntem. Tlm:,e will be

c;_llmd Chapligln's comfficlentg,

I
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of v_riable

_quation(1.26) we shall aall Ch;_plig_n's equation in thr. mech:tni¢_

m_ss. For the i',t_,'r tint of (1.;'6) c:,r_l_l_e _'ith it ir,,l:,ti:_n_

(1.16) .',,btitutin/: the c,_ust_" int::. ,,n r _' .ult t ',,;;:,i: _,

: -t.-m of '; + i

r_ + I v t':i.,i_.ee
%+

+in,'e t],e co_;'tr:,/ut ,,,,u:l-it,rim •_'e ;_nlvr,._ in t++,,mn cf

+,;riv ti" n of c]e]_r,_!o.nt I;,_:'+nI+i:n co_''in t_r _1+I' :!_ t

_,e,_'i].].l_: tel ti, ", nf tb+; type

i ''_._.._ti-I c:u: ti,_;!,_:of the fir;_t or,_or _,_

' qi"

• eo_J

1

% I,V "''
• _ i ir

;:]¢,J,ethe co+ rficient B[iq), , })(!c)( "--. I,,". ..., i; h = I, ;', ..., r)

fuuct._.ns in v ri:bl.,_ qi' t(i = I, ", ..., n).

If f<+r th,; '+:in,<:ic i+.:......n +n '.,,++t.,kc in. cpen+,'nt l'+:+r'+mgi:+n

v,,Inc_tie,_ (_ , t1_en i_" is n_;co:_:';,,ryto u_c ':.l,,ti+,n (I.++_c) in

pl"_e of (1.16). t_:_kir,_"u-o _f the not:,tion ,_:.r+vi,,_ in (I.'!5),

e+:u+ti,_n (1.26) ,+ n br _+:'itten iu the form

¢l .+,

_!t "_v

r
'-<--'l
2

_ =I

_ql÷ "__ " "<-- '_ ql+k '_Pl _+ = 'k.+
k=q

In vlt:v of the w.lue,,J (I _) x+:eh+,ve• g-_;

(1.29).....

I
I
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"- : (I.;) " _ (_,)
f = . .) wp = i, v + ,. ,,l+k,_"% "_ "l+k -, ' _-

i:--1 }.:=1

_U_ ['O"e ' 1 ',,. 1,, i.;_ ti,._ "Ul _'CY T t'.r, ,_n. :' 1i:'_; fro'c,; _ :rid• ! .... _%

' F I . l n,' the ,',l' t i,.,;_ (1...":) ,],, ,;or ( .-, ,*' ;_.itly) c_,nt- _,

n[÷] (]'.= _ _'11 "''I r). i]: r'.11_!I_, ':,":_i tb,_ :_, :_;,.l.jc':i :::._.,:to.rni,q
0.I

ni, ll.l..,r _ I]% • /O]" th" _}_"; _I* ,_ ' "i :_ : b' ' ;_" em (t''' :" _"'t r' t _'"iZe:: .f,tn_.ti,n;

of _" _ "i T t "'11" the r,-_l, lou'.inI? "'I.:."i,':'_;_ _' _. ti#;fio_l.
'%

_r

".b'_; "_' _+_:

"_""I+]: _'!I÷_. "' ' ' ' ' "''' '"

J_,/....:uentl:', the c]_:,_lji:[n rr_U::ll,inns (I.2_) i_ tl:_ m',_:rnt

_','.,_ t'q(_ the form of

r

.... ,._ "bT
L ('_)- , L (:, ) - + ,_

q"' '_ _ql+k q_, "l+k '"_' "
k-1

_h_rr the l_,,:r_n_.','_o,_er_,tor L i,_ _:qunl to
q;,,

, (I._¢_).....

L _ _ _ "_
q,,. at "_qv ">q;

_ " "_ 0,_,_.urt_.ons (1...) ,"e_:ribe a closed "LY';tem of differential

equ,-,ti_ns of the. :_.conrl or.let in w,riable,,_ ql' q2' "''' ql"

4
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_,l:,n th_ rel ,tionP, (I.,'_,_)
_ .... ' " ',',' ,',/lt) _ro,'f:.,_ ,_;_11_, t

L (C_l+I__": ",',t'2.....,,('_)
l (I;)

". a

}'=1

1_ '., ._('-).. .Ojt(k) "

Lq; (_l+k) = ..... ) ' v }

_-i .. ,"

(1 .":1 ) .....

_,:u't.i. ,ns (1,,"0) h,_,cof._e

.. _. r I ' _,3 (h) -_.! ! k )

- v ..... ' ....... " 'l+k ' _ )
h=l "w""1

!
| I--#

( 1.","_).. le I oo

,s °_,_upt_n:_ of Lhe type of (I.Z2) for the mechl,nic_ of the

c:'n:_tr,nt m,-.;:n,-__he_'e E_ = O, were ,_bt_in_,(i b_ S.A. Chapli_In in

the year 15,97 (99). Hence the origin of the nomenclature of the above

discussed equations.

?.'. Vorontz-Hamel 2';quations in the Mechanlce fop Variable ?lass:
_ _ _ - ,= , , . ,,

• "-x'" $

L't us introduce kinem_,tic r_:!),,n:;:_s (ch:,z'act_ri_ties) by

in'epen,-'ent relntions in t_rm.-_ of t_e _eri'.nti on of the

i." Er r_ng,"," c_nr_:in!,t _._.



I
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, 'i

g!

e = ". .Zr +3 ' "i"i +'_"r+ ' _' 9"r_ "/ ' J = '_r+ _'_' J(qi' t)

"iai-

(1 ')ii .2 o eo • •

( '= I, ,, .... I; J = O, I, 2, ... s).

.'e intrt,'u e the ", ',t:tir_n:_l l'inem' tie :', ,-,_"1:; . :: equal to _he

equotion_ of the c_n_tr;,'nt_

S

el÷k = Fk = "' _'ki'i * _'_',o"

i-I

(1. "4) .....

;]U":.:n _. the ,..,lrtic:ns (1."3) on,_ (1."/I) t_ .e in'e]_en,]ent of

e'.ch r_th,,r, then the ny,".,ter_of s e,!u:_:t-ions (!.:3) ,_nc_, (1.34) vi!l

_2 '_bc ._oi":',, in r :_pect of "I' , ..., ° Uo l(_t

l r

qi --- I i%' e _io_%' ../_j /i, ].÷kel÷k

','--1 k=l

(I._5) .....

wh_,-re the coefficients _io' _in (i, n = 1, 2, ..., _) a,'e

functions of q1' q2' "''' qs :;nd t. Putting el+ k - 0 (k --. I, 2, ..., r),

in (I._.5) gives r_Intions (I.16). Hewers:r, thi_ ch:,,n_re is not ma,:e

durinc the 1;roce._,s of derivation, but only in the fin;,lly t_ccoln}_li:_hod

r,_ult. We obtain:

el+ M = O.

Since

L_ .......
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"D F

6 ÷]. -- ,_.__ .Oq i
i--I

1

'I " ",De

%=I

_'" vc,_: h 3,

'2},c,.nfnr., e-.u:.tio_m (1.19) ,.,i'.] b,. u-,,:ru], in tho Oet<,rr.lin:,ti(,n

of kin,_m_,tic r _]?;;.n " ,'.'..'n_.. th,-_r !._o,'_fic.'.t_._un viz. ,Jbr_plin_::

e,';u,',tion'__,,]lic},will b,_ writt,,n in the form

--(_t '.,be_. '_Yr V , • (. _:t ",)e _,
i-I '

= _,, + G,, , el+l, " -- O.
....

I

_ere T ,_el_r)tes the !:in.,tic eneri_,y (_x1_r, :_(:(_ill t,,rr_n of

oridinal ..n,1 _,'ditional kine_ntic r :,pon:',:.nvith the holT, ef

(1.'s) i.e.

T = T ,qi'! qi(e ' "l÷k' qn )' t i

(i, n = I v 2) ..., s; = I, 2, ..., I; k m I, 2, ..., r, s = 1 + r).
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lio t,_ t h:',t

"DT "-_ ",bT ",)en

• --'
n:l n i

'['h,,)'efo:,'e, (1.3C) ,_:,_l h,_ _:_-itt_:n :',_

. ------ ÷ --_ : 1; + G
_It _e_ ',b 7;., e ) el.+k

n:l n

= C) (1.37) .....

_h,._,,ethe coefficients

Wu .-.. "-,_" _ 'i _--

i=1 ' "i '- ,'

(I .3t,) .....

L ....

,I

:re'pr,.;,en%the kine))._tic v_lu_n. _hese v_luen ;epen<! on]._v uT;nn the

r_lection of the cnor_iu_tnn and nmt on th{: dynnmlc ch::_'_cte_'i.':tic

of the system (m;_,qes, mov,,):lent._ of the inerti;_ etc.).

n "' I; n : I, _, ..., _)The coeffiei,nto W ( '_= 1, _, ...,

r_e called coeffici,'nts of

the first type. ..;_:u_ti:_ns (1.37) :_re called

e,:u:,ti:_ns in the meahanic,1 of v:',ri:d_le _r_::cos. 2he _,iff, r,,nce

het_t_.en cheek the r;_mc Vorontz_Hamel equations (1.37) ;_nd

ClalJgin equations (1.26) consists in the f;_t that the for_n,_r

ec_uatimns _,?e can be completely solve_l. '2hey _o not contsin the
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ternl '/T (i = It 2t .-.t s)t which appoira i• tern• of
'_qi

_T (• • I 2t I) It became posmible only because

ef the introduction of the additional kilematio charlcterieticl

equal to the equations of the. colstraiatso

X• view of the relation

S s

_.,._ _e a __/ =... _, ,

" -_i i dt ,,"_do .- •
i=1 I=I

,,_i, _L -..e

= _qi s

-___ .-_ii,i _-? = //
i=1 " i, i'I

and the equation

a "_ "_e•
..:. ' n,. i +,,

i-1

• O,

vhlch holdm good, ve obtain a fiaal expression for the

voroasa-Hanilya coefficieats of the first type

v" ",k:, _qi ._o ,_ _",,

I-I

(1.Y9).....
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Let the reletiono (1.33) mad the comstrmint equmtioma

and consequentZy the relatiou (1,35) be steady aid homo-

geneous, then

• ," •

W_ - > _ ----- " - "/____ i,_, It "xll£ J
i-1 .j-_ ",_qi

We chJmged the number im coefficients '_i' by delot£1 I

•_r+ ",,i by '_";i _d "_k£ by _l+k0i" We thus get

ll ,/,_"" -" /Yml "7)&nJ
_1 -,

V m ,m,

' '_ _ q_ _ qi .1 /i,:1=1 ""..

or on the bsum£s of the hololenii_y(uniformit F) of the

kimemat£¢ characteristicl (1033) in the preseit case

where

1

it " • . I

-(t'l

• /

/L_.._ '\, _q.l
< £,_=1

"? q:l.

(I._o).....

V
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The coofficiente',,"_hi©h depend only u_on the Largangian coordi-

nates and time are called veronoa-Hannily coefficients of the

second type.

EquatiQnJ _1,37). t_ke the form

I 1

---..- -- ------ " "'" _" _ _ T ._ el.k= O.
dt ?o. .,,, . _e n )

n'l ),'1

(lo41).o....

For the holonamio systems with constant mas_e8 equati.on8 (1.41)

were obtained by PoVo Voront_ • in the year 1901 _9)0 In th_

sane year he published another work (10} containing all the

necessary detail, on how to extend the above equations to tke

non-holonauic eyoteme. In the year 1904_ Hamel_,,. obtained with

cenotalt lassie (110_0

It is for this reason that equationa (1o41) are named after

vl_OUla Idld Haanil_a,

20 Bauationus of,Motiom uolat oDeoLn_ derivativol.t

lo Equations with undoternined multiplier, mad explicit

oaloula_ion of reaction of the nol-kolonomic oenstraintso If

we re.eat the computations siren in _ 1_ paragraph one0 for

the general equation of the mechalica of a variable naom £1 the

fore Of (804) of Chapter II, we get the followil_ equatiell with
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,(£ " 1, 2, emil S)e

(_el)eeeee

Xt is easy te see that the equations with uadetermlaed

multipliers (1.6) can be written in the ferm (2.1). Hewever,

the independent derivation ef (2.1) frem the general equations

o_the mechanics enables us te see that tbese equatieaa are mere

useful te treat the general fuactienal dependence ef mass than

these ef equations (1.6)o

_kis fern of equations (2.1) is useful for solving concrete

problems. Tkerefere, it is ceavenient te write undetermined

multipliers In terl of derivatives used An equations (2.1)o

The direct traasfernation of expression (1.15) preseats I

difficulty because in that case we have te replace derivatives

in the formulae which determine the elements Ak¢_ . It is alas

te be noted that the result (1.1_) _ees net always held b,cauae

masses ef the peiats ef the system ma_ d_pend besides the time,

the legranges ceerdlnates and the velecltles, upen certain

additienal variables llke paths traversed by individual peinte

ef the meckaalcal syetemo

Let _s briefly com_ute the end of p. I S_ction 1 for the

present case.
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_oT

New examine the geaeraltzed impulses Pi • :_qi

Free this we get

qi " _i(qa ' Pa' t, u_). (2.2).....

Take

F_. zx(q i, ql(qa, p;, t, m_), t). (2._).....

We have

it-

The expreesieae atamdlag in the brackets are equal te zero

boca_le

The expressions in brackets are equal _ _ero, because they are

partial derivatives of mj, similar to the transformed equations (2.2),

if we take Pi =_qi"

Write ia detail d*d--_F_ - 0 _d put it iatke valuee ef

d_LS

Poi' as obtained frem equatieaa (2ol), we get the tellewiag

rezult get madeteruimed mmltlpllere
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Za thio B_}j. are tho elonent8 of tke natrix which i8 inverse

to the matrix whoso eleneatm are

l

is1

Deaete

_, •

-- r . ,,. " '_ ÷ _'i '" ' i " Z- -_qi qi ÷
Dt i.q _', ,' i.1

+ . (2.6).....
_t

'" Dt represent the derivatives in reepect e£ fine ef

equatlea (2.3), which are cemputed when mamse8 are flxe_ and the

effect ef the cenetraint reactien ia act taMen into account. The

fernulae (2.4) was werked eut wltkeut any restFictien en the

functleaal dependence ef ma•a o_ peiata.

PUt _ • O, in (2._) and It give• undeternlaed nultiplier•

in the lea-helen•nit neQhanlc• of the eeutraint na•8 /60! •
°

9herefere,

(2.?).....

repreeent8 that part of i-aM generalized reactlen of the he•-

helen•ale ceaetralnt8, which i• caueed by the preeem8 ef ehaage

_ tf ItIOo
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2. i,;quntion of Hotion of Chapli_,in__and Vorontz-Hamel:

In eke preeent inveetigatien, starting of the general

equatiea of meckanice differJ from eke earlier uaed general

necknice equation in eke particular derivativee and tke

availabilltF of the _enerallzed reaction fercee In place8 of

aurplua feroeee

Za cenf_rmltT with the derivation ef equation in the nen-

heleaemlc ceerdinatea, chaplinga equatlele eaa be put la agreed

notation as

e

dt _e>. "_ _., ....
i=I

(2.8).....

a -0_ i
Whore _ = _'_._'_ _e_ Is geaerallled creatien farce la

reapect ef aen-helenemio ceerdiaate.

Far n chaplinga e_eten _ri_h variable naeseo let us take

lagraagiaa ceerdlnates In place ef the nen-helenealce, then

equatiena (2.8) are transferred te

d e "_T "_*T
eumnamat umSJmemJm o _mmmmmmmu

4t _q_ "_q_
%

Me1

/D %

f

(_og) eeeee

8
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Vereusa-Hannilya equatleme beaene

" _ 7_,, + //--_-_ -Oem Wv
mml

• E +C_, el+ k • O.

(2.10).....

From the way the equatlomm (2.8) - (2.10) are wrlttea, a rule

may be fernulatedo In order to cemstruot these equatiome whom the

metiem of a certain mom-kelenemie system ie studied, we write the

equations for a cerrespendiag preblem with constant masses.

Kow te apply equations (Z.8) - (2.10) to the aea-llnear and

men-kolememlc oyate, wlth variable masses has been diecuaaed in

autker8 werk _).

3. Ga_es's pri.ci_le.

Feundatien of the Principle. Censider Gausses fuactiem

In tkls suunatlen Is takem ever all the points of the eyete.,

d--_" Is accelcertlen ef _tk peint em an Arbitrary kiae.atle

traJectery whese ceerdi.atee and velecltles at m give..e.eat ef

time celnclde wlth the eeerdinate8 and velecitiee ef the actual

The .uses m_ and actiea ferees F_ en varyingtraJectery.

bunching tra_ectery are the sa.e am em actual tra_ecterF (reactlea8

are eleluded because the oeaatraimts are Ideal)e The re.ctlem

ferces_ which depend upem the acceleratien de net vary when (en
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transitien te bunching trace_ecteries). We change ever to the

varying traJecteries.

Let a neckanlcal system be subjected te the linear nea-

kelenenic censtralnts wklek can be written in the Cartesian

ceerdlnatese

(3.2).....

ake make (xp, t) (k - _, 2, ..., r).

Indices _ and p assume values in vkele number fer all Oarteolan

oeerdiaates ef tke meckanical system. Fer the cenvenience ef

writing we denete tke cartesian cserdinates vitk reference te tkere

mutually perpendicular axes by tke letter x wltk tke cerreaponding

indices.

Tke varlatien8 natlmfy tke fellewing cenditiems

% - o.

Tke differentiating equatlens (3.2) aleag the

ef the neckaalcal 87stem

traJ ect ez7

I
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%yx (:..,.:,,:.t:). o. (3. _') • • • • •

where _-io a fuactlen of the indicated argumemt 80

Since the bunching and the actual tra_ecterieJ have the sane

velecities, ceerdiaates and tin., the 8ubtractien ef equatiea8

(3o_) fer the twe tra`1ectles, therefere, gives

-_',_ (;x . xo ) ,. o, (3.5)..
%_ _ _ -.-

),

where X7 - is the eenponent of the acceleratlen e_ _-th pelat is

the oenpeaent ef the aeceleratlen of 'e point en the actual trai`1ec-
x`1

tery. Indices _ ef the peint and ef the cartesian aceeleratlea

are cennected by the relatien

_'- 3 (,1 - 1) +,[ . (_.6).....

q nBsunes the values 1,2 er 3 and indicates the eLrteolan axis en

whleh the pre_ectien takes place.

6

£
It is evident tren the _elatlen8 (3._) and (3.5) that we nay

tame values 1_repertlenal te the difference as v_rtual displacenentn

xy In _he general equatlea ef neehanleo. Deaeted bF x - xe_t

the pre`1ectlen ef reactlen ferce applied te `1_ peiat ea q -- axl8

and by X_ the test.spending _0_ectlea ef the fete. F`1, the general

equatlen ef the Bechanlo8 in oarterlan ceerdlnate8 Is written as
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.-'_ (m G'o - x -R_.) Cx'x_
"o )" Oo

"x 5. (3.7).....

The double equation (3.7) may b• presented a•

Q.Q. + ,_ n (x - (3o8).
/___, eeoc

A• the •ecoad component en th• right hand side of (3.8) is

pc•drive for any bunching trajectory, the function G, therefor•,

attain• a mlalsum en the actual tra_ecterT.

The embodies Gaus•'• principle £er a mechanical oy•tem with

variable ma•ses, which cam be formulated as under. The GaussO•

function G (de•crlbed in (3oi) attain• the minimum on tk• actual

tra_ectery of the s_stem wltk variable masses, in comparison with

similar (¢engruemt) traJecterie• wklok at a given time have the

•ane coordinate_, velecitic• and reaction forces as the actual

trajectory.

2. Equati•_n. ef Gnus• aadA_w!e.

Gnus•°• oquatien• will provide the me©on•sty oondltien of

minimum Go

• O ( _'• _, 2, .o., I! i = • - r), (3.9).....l

where prise Is the derivative moans that while computlag the

derivative in respect ef Av reactlea ferns are met dlfferentiated.

i
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OausoOe function can be oxpromxed in tke fern

1

G - 2A - 2 /

v ml

(_'+ _v ) ev + P(qi' ev ' t),

wkere

function in tke indicated variables, Appletm equatienJ for

the non-kelonoaie no.kanicn follow from equation8 (309)

(3._o).....

_0 Motion of the Nen-kolenenie System witk
Constraints dependin& upon tke proceom of

_kanee e£ _aso. .....

10 3ouatien oZ_etiea. Let the notion of a neekaniea_

sFsten be j_b_eatod to tke keleaenie aJ well to nea-keleaenie

eeaotraiatl vkiek no_ depend upon tke nasa of point. If memo

koloaonie oonet_aint8 depend upon tko nasa onl_ and na 7 be

expreaeod at fuaotien8 of eeerdiaatea ud time, t_oa ea account
.."

of variation in hue tko_ will rennin kolozenieo A |or of m

la_rantieuL ooerdlnate8 qlna_ IdentloaZZF oatlJi"7 all muck

eenetaatm. We ekeul( alme take late eensideratlen the nee-. ....
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kelonoeic constraints wkick are obtained from the original

non-kolensei© constraints altered by the variation _n ease

and also from these original kolonoule constraints whisk are

reduood to non-kelonom£o am a consoquon©e of tko dependence

of mass upon velocity. Lot the non-holononie thus obtained

co_8traints satisfy a set of tks kinomatio okaracteristi_l

o•o • n 1o 2_ ooo, 1! 1 - sot, wkere r is the number of finally

obtained non-holonoeio _onstraintmo

Tke Koaeral equation of tko msokaaic8 written in tormm

of derivatives wink stars loads to s equations wink undetermined

m multipliers

(_,.1).....

where _k ere undetermined nultiFlior8 for _ko evaluation of

t t) - 0wkiek an explicit .expression na_ be found. F_(qi , q£,

ere the _inallF obtained oquntiola of tko non-he%anemia oonstraintmo

A8 boferoo TD(k_ qi_ qi o t) denotes tke kinotie emery7 of the

oyeton aalou%ated o1 tko basis of kinonatio ekanSo in the procom8

of shanks of uses, ioO._

'o'+ Z (q,'',' ')"

1
o 1
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Zm this vj(qi' qi' t) account fer the new holenonic constraints

obtained after takinl, into conr.ide,,_tinn the process of chr,n_:c of m_,ss.

As shown in section8 1 and 2 the chaplinge equatienm

and the verensa-Hanil_a equations are respectively written in the

tern

where TD represent the kinetic energy TD, in which qi are

expressed in terns ef e_, ' q£' t, while n_ are fixed. The

derivatives are cenputed keeping mass ef the pelnts fixed in fumetlene

TD and TD" Sign (prime) means that corresponding values are deternined

on account of flnall_ obtained equa%iQns of the helenemio and the

aen-keleneni_ conetralute®

In ohaplinga systems It the independent lagrangian velocities

are taken as the klnenatIG ekaracterlstics ov then ckaplinga

equatieae (_.2) na_ be wrltten In the tern
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dt "Dq_

1.v

k-1

- TD,
L (ql÷k) .

-_ql÷k q_

r

k=l

 ql+k
(4._).....

viers akaplinga coefficients are equal to

(#.5) .....

Equations (#.1) - (_._) c_ be written in ter_ ef regular

partia_ derivatives.

The application of equation8 (401) - (4._) to tke non-

carrier nen-kolonomie systems with variable masses has been

discussed in the authors work (6_),

t

÷

/

i .

2o Exam_looe

A cart (nentiened earlier in _ of the last _kapter) will

serve as an exanple of the noa-holonosic systea with eenotraints

depending upon the process of akange of nasa if the piano of tko

front wkool is inclined _o the plane of _ke rear vkoelse

We will oxani_s, in detail, sinpler exanplo of the rellis¢

without eide-we_ys metlen ea the korLmenta_ plane of the wheel

Lade up ef abselutelT flexible band ef thicMaese k and the

llaear deaslty _ • _ke exanple is Ix%cresting is the sense _kat

for a partly (special) nea-keleaenle eFaten the ekapliaga
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equations degenerate into Lagrtngian equations.

The position of the wheel will be determine_ by ¢_rtesian

coordinates of the ¢_ter _, y, z_ and Eiler°n two anglos _, _o

Denoting by,the ankle of rotation of wheel tad by th_ _,gle

between the axl8 of wheel and Xoaxis, we get

T •

2 2

where m is the mann of wheel. A sad C are cerreapon_i_8 mem_ts

ef inertia. Coordinate = i_ equ_. to the _a_ius.

By analegy to _he problem given in _ara _, _ 3 el' C_apt,r IlI,

we find

s2. w (l -s),
-'rr

where i is the length ef band forming the wheel Inltially_ s i_

the distance ef the point c_nta_t. Since a = s_, differeatlati_

the last equation we get

,. _..1_w_L _ I h

whore r Is initial radius of wheel_ __- *_

Kiaetle onergF TD is given as

I

!
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2A_2 + + 2

2

5_ko motion of the a:rstou satisfies the nos-kelenou£o cosotrs_ats

i= "T _ c,,m# ,

_,. - --_.-

Suck a system is called ckapliaga 8ystoa,

Ckaplin_a coefficients kate values

,_ (x)..

• m

Since ckaplingn coefficients are different f_em zero t se the

above ¢enmtra_nt8 c_Jt not _e integrated but it ia easy to see tkat

,Therefore, ckaplinga oquationa (3.G) degenerate into _qL_'sn_e'a

equatie_8o

,. .... ...._" :_
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The transformed kimetie enorf_ ie written as

Generalized reaction faceo are equal te zero; further

IE_I • melt_2_ ' _1; • nK_2_.T . Tkil gives the followilq

equation of motion

I "-"
FroI tlrot equatien, we kave,_ _ = _. In second equation, puk

" _. 2_ "

I = k ,C" 2 " 2k

The eubatitutieI

i

reduoes the obtained equation to the form (),_) of Chapter Ill in

the varlableo a 2 and o.

PrebleI 2. Let us atud7 Felling due te inertia aleng the

herlsental plane et keIeseneeuIapkere (ball). The 4eerease in

iaII ii prepertlenal _e the surface area ef the sphere
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dm L 2
dt " ,,- 4_'_' S I

where _." = constant! s - radius of sphere, Mass of sphere

m - +'_ _r s_ where _ is cenataat density of sphere

the iaitlal radius by , we get

s u r --------- t •

Kinetie energy ef sphere is (61).

Denetlag

=D --= "=z c_,z_ z__ _iz" Z +)Z+ ).a .+_ + Z . +¢2 + 2_++ co.

where I = _- az2_ i8 the uement ef inertia ef sphere abeut the

diaaeter, x, y, _ are herlzentalCaerdinates of the eenter of

sphere _ , _ , _ are Eulerian angles.

Lagrangian _eerdlnates ud velecities uuat satisfy the equatiou

ef aen-helenomic constraints.

D

-- _ _eel ÷ R

( ?7+ r---t

Thus there emerges ckapllnga system of _hioh the traaafermed

klaetlo energy is written in the fern

+



We find equttiene ef the type (_o_) in vJr|ablte _t i _l , _ "

Because Keneralised feroea are equsl _e zere, tkereforet we ka_e

-_-d ---_--t , _ _ ÷ Z C "*'_ coo _)-
• at _-

2

in m _t r- _ ein-t_Ot

i

_--_---/4. _, oe- _ ) O,
Z dt \ " "

2

2

After nakinK eertain tranefornat/ene, ve have

+ Ceil e • m _ele_t
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5

d lira /" •

These equatlen_ iaF be written in the tern

d _T' "_T' _" " 2
--------- - ----- - ' _l.Im . _, (4.6).....

!r - ---- t_

_" 7" :

d _'T' aT'
m m

d"T 74, -_. . o, (,_.?).....

d _T' _T' _' _' (_.8).....m go I a

Hew eeaoider the ease when the ball (sphere) la graduall_

restedo

be eeavenieail_ iaiegrated b_ aethed of Jaoobi (61)o

integral ef Hamiltea-Jacebl equatieam

Sup_ese _i'= O, we get a a_atea of equatieu wkieh on

Total

B'V C

-_-'_-+ 1_ aias

¢ ]+ \ _ $ / ell z _ - O

_v _v
" _ _.<'-'F_--_-e. +
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is equal to

"1' a2° a))- _ a_t,

where

t(_, %, a2, a3) - e,n2_, z%,2=o _ 2 2 a" (al + a2) e:i.=_

ai • COhere

From here we obtain the partial integrals

1

I" aRQOe _" - a 1
A_ . b 1 " conet_

=in_.
(_,9)...

" = b2 = constt
(L_.IO)..

(;.11)..

(q.,11) liivea tke value of e,

-ooa ala 2

L_

(_o12).....

f

I

t



Differentiating (4.11) with reapect to tile, we get

- ,, - . 12

Tkerefore, (4°9) - (_10) are transformed to

, i2oos _ - u1

++ !_" ale°e_ - a 2"- 2 _ dt = b 2.
' Bin

(;.13).....

(;.1;).._..

Taking into consideration formulae (4.12) - (_.1_) and

denoting

a2 (a_- _12)(a_ - a:)_ "E" tE 2

the £ollowinl exprexsion8 for anglon are found

9 ',bl+
a2(a 3 al2)

X

X
4.

A

f

i

/
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a_ a2 %a2 +
+ ' aret8 .,_ : ,+('1 "2 2 j 2-- '

a_ - + ala 2

(;. 15). • • ..

2 ;_ 2 2 2 2
_ " h2+ %(a_;- a 21 + a2(a 3 - %1 X

d" ............. ' " - --

4"

4

, {a I + a2)-i/ a3 .ala2 . L arotg"

• _ a 2- ,Ia2 _ a_ a2 + al, 2

(_.16).....

t

We ekoose the eonstanto a i o_d b i (i - 1, 2, 31) in such a way

that the funetlona (4.12), (4.1_), (4.16) and their derivatives

are-satisfied by the initial conditions of the ball witk variable

mass. These eonstaats are denoted by sere. Umder 8_ow hoatt]q_

of the ball tko obta_ued functions will be approximately equal to

the an_lea sousht. F_r _reater aeeuraoTs we ealcu).ate riKht aide

parts of oquatlons (4._) - (4.8) and restrlot tkom to terms

©omtaiain_ sma].l multiplier sad to the first o_der u_i_ results

j



(_.12) sad (_.I_). we cet

o o _ :_' sin 2¢_ , O, t2(a_, bit =f1(ai, b i, t) = o t) _" , (;. _?)...

Tke system of equations thus obtsiued is called a canonical system

accordance wttk perturbazce tkeor7 widel_ used in celestial neohanies

(20), solution of above equations in gives by results (".12)t (,.1_)

sad (4.16) in whtoh air b I are determined by canomical equatioas

d,_ _ ,_e,
"-"_--= tl _b i + f2

_ bi

dt - t_ 2.'_' " ta 3"i

(4.',8).....

t

|
t

0

and have initial values a_, b i-

For exaaple, ooneider rollin_ of ball with initial conditions

4

% " ¢0" _o" o, "_o "'_'o" o, _o -_o (4.19)....

On accouat of (4.12) - (;.17) and (4.19) we Set

a I • a 2 • O, b I • b 2 • Ot a 3 = 7- , b_ •j-T ' fl = O, t 2 • _x'

i
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E_uatione (4.18) in tke present case take the fors

da I da 2 _ -_ ,:,,,;

d-"_ " O, ' dt - • O, dt " ._'-r__-__.

rib, O, O,25-- .+dt = dt • dt =

This gives

a I = O. a 2 = O, nil • _ +
/I

b I - O, b 2 • O_ b 3 m_ . _ _LL_ t2"

Finally, fros (4.12), (4.15) and (4.16), we find

i:

Of'= O, • O,

--.-

Consequently, the decrease in uasa accelerates the rolling

(rotation) of the ball. Horiaontal velocity of tke center of ball

is equal to

_ - _(r- X---t).
)'

Restricting to terns containlag to the first order

"_.. = _ _*I . -.g- ,X __ t ,

i.eo ho.iaontal velocity of the center of ball diminiskeao
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SPeCiAL M_CHANICAL CHARAOT_I_TIO OF BODIES WITH

VARIAI_I,E FLAa_Eg.

1. Principal Vecto E of the Reaction Forces t

In the present pa=agra_h we will obtain the reeulta

for the principal vector of cariolin forces and also for the

principal vector of the remaining part of the reaction foroe8,

There results in the case of a rocket were _rop_sed (formulated)

by F.a. Gantmakher tad L.M. Levin in the year 1947,

1. Fornu_a for the Principal Vector of the Oariolin Force8_

Principal vect)r for the oariolieo forces may be written in

the form

J . .-_ ." c,. X _r

where the summation is taken over all the particles _,.,.:..is angular

velocity ef the rotation of the bod_, _r Is relative velocity ef

certain particle, m is its mass differentiating the eom In respect

of time we have

I

L ......... J

C. .. mF, ('I.'I).....

(t)

which is computed for all particles preaeat in the bo_, _ is

radi_ vector of a certain particle with reference to the fixed

origin. 11 order to differentiate we will think of the oum

(Iol)t on the one hamd, as the mum ov_r geometrical poimto of

....... i



d

the body having varisble nass and, on the other hand, as the

sun over moving particles of the cone,ant nasso

Zt may be noted that the composition of the particles

forming the bodF of variable mass will varyo Therefore, the

sum (_.I) will, at different times, be computed for different

nets ef pa_tlclee, i.e•, at time t it will be taken over by all

the particles included in the composition of the body at the

given times

Differentiating according to the _ormer of the two

indicated medea, we have

i.

where integration is performed over the volume of the body, while

the domain of the integration is fixed, assuming that the density

F(X, y, z, t) for certain points Is equal to zero• In (I.2)t

represent tke velocity of an arbitrary geometrical point of the

body.

Now considering the moving particles of the constant nae8_

we gel

[ - "tin
d% L\ at

Vector G_ at time t + _t ia equal to

•
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_ (t ,At) =
(t÷_t)

m(_ +_) •

,,_._ _ '_

(t) (1) " (2)

where ._-_._ is taken over all the particles entering into the

(I) _ _ ,_F-_
body in interval L)t' t +_ t_ , and ,<--_ is taken over all

• (2)
the particles ob_ecting from the bod_ with variable mass at the

smme time._,%( denotes in the two cases the corresponding mass

of particles.

We can write relation (1.)) in the form

d____ =
dt L\t

(t) _,t-_,O (I) _. t Z_t "*0 (Z)

(1.4)....

Here _ ia absolute velocity of particle of mass m. The first

mum, on the right aide of (1.4), £a taken over all the particles

composing tke body at the time under consideration t, i.e., over

the particles flowing in the body and also over the particlss

of the frame of the body, therefore, taking into consideration that

-=i - ; + Ur,_=_ =. ;/_d ?" ,

k'T )

1



J
i

and also the fact that for particles of f_ame _r " 0 we get

from (le2) and (l.h)

_"-'--, mur • , r _ d'Z- lira ._.

'. _ _ t At-;o (1) zkt eit_-o (2)

(1.5).....

Let a point of the body A be taken as positive, then

w

; " ;A + '_ x (P - PA), (I.6).....

where _ = velocity of an arbitrary point, v A • velocity of the

point A_ _£ radius vector of point A I ,',_ = angular velocity of

the rotation of body. The velocities of those points of the

body which coincide with centers of the inertia of the particles

entering throush the surface are euqal

J

1

!

1

(1.?).....

v I _ad v 2 portable (carrier) velocities of the centers of inertia

of the particleu enteF_u8 and leavi_ throuak the surfaces

We know that

!.

_--_ d' • li= /
_ At-_o (1)

--zl t
t_O (Z)

, (_.8).....

L



-aa6-

I

J

i

Multiplying (I,5) on the left vectomially by -2 _L , we get

(1.9) oo...

Let _ be per second inward momentum of the particles through

the surface of the bodys azd let _ be per second outward momentum

of the particles through the surface, then

Free 41.9) e_d 41.10) we get

41.10) o.o..

• it' • 41o11)o....
, . - /

We know that

am lm

_r_ ____P_.J__,. _._

where _ i8 prinoipal vector of the momentum of the bod_o having

a variable mass, Therefore0 fornula 41e11) may _e stated as

• + a " _2 ...o
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I

I

2. Formula for the Principal Vector,of the r,eactio n forcemt

Consider the difference _ - J, where R denotes the principal

vector of the reaction forces, applied on the body of a variable

o-

nabs; and J in principal vector of the cariobieo forces. From

equatinn (1.9) in Chapter IX,

{t)

Here the summation is taken over all the particles moving In the

body with a relative acceleratlon_.r! n is mass of such a pkrticle

The principal vector of the impulse forces is deternined by (1.11)

in Chapter IX,

where the summation is carried over all the process of impulsive

change of relative velocity of the particles. The value of such a

pulse change in the 8aae process Is denoted by /_r ' and the

intensity of the diffusion of nasa in this process ia denoted by

dt •

As seen while deriving the equation of the motion of a point

of a variable nasa, the prlaoipal vector of the impulsive fercea

is found for the processes of the pulse (in]mlstve) change of the

velocity of particles present i_ the bod_ at time t. It is

" L " _ _ ;:_J



similarly found for the particles entering the body and

impulsively changing their velocity la the procoseo

Thereforot we Get

(1) :. (t)

(_.I_).....

where 0 2 is infinitesimal of the second order. In (I.1_) tke

lulled- is taken over the particles entering into the body in tiem
(I)

q

,'_t9-.'_-* is takem over by the particles which are present in the
(t)

body at time t and whose relative velocities change impulsively by

_2 - _1 in time t.
r r

Noreover, the vector_ rAt gives continuous increment in

the relative velocity of t particle. It can be determined upto

the second order iafin_eaimal. Absolute continuous inorenent in

the relative velocity of the sane p_rticle i8 equal to

A "r " :_"r :t + G', X _r) _t + o2.

ioOe

It follows that

_t + 020 (I,15).o...



m
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""" _ m( "
• _ I ;",, U r "" /

(t) _t)

x ur) _.,t + o2. (1.16).....

In (1.16) the summation is taken over by all the particlem

found in the body at time ti,'_u r represents the total absolute

increment In the relative velocity of the above particles.

m t tv/_r" Ur( +,,t) - Gr(t).

Using (1,13), (1,14) and (1.16) we find

-(1_ - _)/_. t -
• A m_G (t ,_'.t) -_ (t)_ "-' m( xG r) _.... t ÷

) r r "

",7' i_t_

(I)
. Ur(t * /'.t)- Ur(_)_ + °2" (1.17).....

.Ooneidor the principal vector of the relative moment of

the body of variable mall IIoe.,

qr I ..... ,. n- r ,
(t)

(1.18).....

where the ausmatlon Is taken over by all the _articlee which

are found in tke bod,T at the tint of observation t. In order to

L
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flmd the value of the principal vector of the relative moment

correepondinE to the time t , l_tv it suffices to take the

summation _Ja (1,18) ever all the particles which are foumd in the

body at time t + _; to Thuo it is m now set of particles over

which the eumaation is eff-ctedt and consequemtly we set

_r(t +At) - ""_ m_r(t ÷ /_t) -

m

(t)

"_ ' ' (t *At) _" _m_r(t +At) ÷ /';" _r " " ..... '_/ _r (t ÷ .P,t)o
i

(1) (z)

(I,19)....,

•"--- Ss takes over by the par_icles compostsE the bed.7 t; • _
(t) (1)
is takel over by the particlel "._Itbria_. i_to the body in tia_l t_

%

_-_ is taken over the particles which e_ect from the bod_ il tim
(2)

Ate

(1.18) mad (1.19) transform (1.17) into

m-

-Ca - _) A t - Qr(t ÷At) - _r(t) ._c x _r/_t -

!

£___ A.L/

(_) • (2) '

(1.20).,...
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Since

_(t, At) -_(t) - _" x_ _t ._V- ,,xV _t = _,*_,

!

1
I
J

whoreS'.means the increment iu respect of the bod_ as ,_ t tends

to zero. On account _f (1.20) we get

-- -- r d'_ r
R - J = _I " dt . _r2" (1.21).....

(1.21) d's_r
dt signifies the relative derivative of tk@

relative momentum of the body in respect of time, calculated in

respect of the bod_!

r ___ _r ..._r_t__I " llm " (1.22).....
_t_'0 (1)

is the per second inward momeutum of the particles inside the

surface of the body,

L

Q2r = ale _'_ _,_. t ur(t + z_'t) (I._).....
4t_o (:_)

is the per second flow (consumption) of the relative momentum of

the particles through the surface of the bod_,

and_ are thus the surface integrals of the integrand

funotioa_t u r. ZI ease et'(_ me consider the process by vhioh

the particles eater the surface with intensity-_ and with

relative velocity _r" Intraace veleclty viii be takes as_ r, For

._. \

J
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_ those processes are by particlesconsidered whi6h leave the

surface while Ur will characterize the exit velocity inaediately

after leaving the surface. Xn case, the motion of particles in

the body of variable mass is steady and does ae_ change, then

d'_ e 0 and consequently (1o21) can be written as
dt

On account of (1.21) we get

" Q1 " dt (_.2A_).....

In case of established process of change in mass, formula (1.12)

takes lhe followin_ shape_

(_.25).....

1

I

l

2. Princi_al Moment of Roac_ion Force°

1. The formula for the principal moment of the carioliso

force calculated in respect of an arbitrary point A of the bod 7

¢fa variable me. We will di_ferentlate the following expression

In respect of time in two ways.

(t)
(2.'1).... •
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Where the summation as in (1.1) is taken ever by all the particles

present ia the body. The range ef the summation will wary at

different tines, In (2.1) _ is the radium vector of a particle

for a fixed origin; a is mass ef this particle; _A is radius

vector of the point A;_-- ia the angular velocity of the bed_o

Ceusidering _ as a sum of the geometrical points of tke

body, we will have

- • _(; - x x (; - i z d"_ (2 2)

where the integration is perforsed over the volume of the bod_.

As in (1.2), the dooain of integration in (2.2) may be considered

fixed, assuming the density to he'(z, y, z, t) • Oo

Thus we get

_L

d_
. _¢ (;-;A) x x (; _Adt _ i

_,_ I _,., X (_ - rA) i ! • d ""

+ ;,-_ !(r-r A) x x (r-_A

, P_ I

(2.))....

I

i
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Now differentiatinE 8 in another way. Conoider • to the

moving particleo which form tke _odT_ we findo

d_ - l_u --
dt _t_O ,_ t

As in paragraph 1 of Bection I, we get

;A)

(t)

(t) _' ,'

÷

÷

÷ llm .....
3Lt.__ 0 _t

I
w. lln

,_ t_O A t "(2) .!

. (2._)....

.... 48 taken over all the partimlem which form _;ko bod_ at
(t)

a _iVen _tme t_ _ 18 _ho absolute velool_ of a par%lolo! • i_ _ao

mass of this particle! • . is taken over all _ke partiolea onterin8

int:o the bod_ in interval ['t, t 4. %It . iO _aken over all
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particles which e_ect from the body in time z_t.

Comparing (2.3) mad 42.4) and takin8 into account the

usofulnee8 of the Eulers formulao

;. ;., .,.• x c_- _A),

for the velocities of points of solid body, we write

p_

,.... mu, X :'X (r - r A) i + ........, 1 m(r - r A) X-(,t" X ur)i
(_) - (t)

, ,.. _: c_t "

m

+ nlm ,, (r- rA) x (_; vA)
,_L_ t - .,_t._,o(2) -"

(2.5).....

In (2,5), the expression

_t_o (_)

(r --r A) X (q -vA)
,e'_,t

(2o6).....

bk

{ is the per second influx throuEh the surface of the drift kinetic

moment of the particles about the point A which moves in a relative

J t
t
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translational motion in respect of syatem of the axes.

Expression

, pA)
• -----, /. L.

12, - llm _ _!_ (;- x (_- _,)
•'_t_O (2) -

(2.?).....

give• the per second outflow of the drift kinetic Ioment about a

@ •

point A in similar circumstances (conditions). _IA and _2A are

basically the surface integrals, their domain being the surface

of the body.

Opening the double vector product• in the first term of the

left aide of (2.5) and then adding and subtracting the expression.

_ ¢ _ Q':., 5 =Hr '_.:<(_-_,) _ .
(t) "- -'

We write the left side of (2.5) in the form

"H'A" _eX_A "

Here

z,I,, i
(t)

(2.8).....

i

3¸

!

I

denotes the principal moment of the carioliso force about the

point A. AIio

(t)

(Z.9).....
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is the relative kinetic moment about the point A of the particles

moving in tkebod_ with a variable mass.

Thereforet by (2.5) we obtain the following expression for

the principal moment of the carilieo forces about the point A_

_A IIA I^ .. •• {(_- X (;- "' d._ -
= - "_"X " . . I _ t

(2.10).....

We know that

""i/t_ (;:- ;-,)x (; "
..i " va)J

- dl A d* 1 A
_ me am

_ t dt dt
(2,11).....

where

ia the kinetic moment of the body about the point A which is in

a relative translational motion in respect of a system of axem.

Taking into consideration (2.11), we write (2.10) in the

folio

T-k

|

J

• _ _ - _%
' +-- dr" . _ede_A 2A* (2.IE)...,.

A special case arises when the point A ccLncidea with the

inertial center of the bod7 at a given time. in such a case (2.q2)
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is transformed iz, t_

"1 C ° _
B_

which in keeping with (2.11), we get

(2.13).....

I rc ) X (v- c _ > t " dt " dt- "_ d+" ,, +'+ , c

er

. (2.1_)...

2. P_incipal Vector of the Reaction Forces t

Take a point A of the body of variable mass as pole and consider

the difference of the principal moment of reaction and carioliso

forces about the point A, i.e., M--A " _A" By (2.2) of Chapter II,

A

'--" r

(t)
(2.15).....

where the summation is taken over all the particles of the body|

_A denotes the principal moment of the impulsive forces about the

point A and is equal to, according to (2.3) Chapter IIi

m

(t)
(_" _A) x d'_' '_r"dr

The summation is thus carried over all the processes of the

impulsive change of a relative velocity of the particles. _ A is

introduced as a fifth order integral and the integration is
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performed ove_. the 6urface of the sufficiently small spheres

around the geometrical points of the body and then over the

volume of the body.

As before,

%

._AAt .- , _,.,,
(1)

I '_ _

(_- IA) x ,, _ (t +t,t) - _ (t) +
L. r l" .

the symbols used _n this equation have the same meaning as in

earlier discussion. .__, is taken over the particles entering
(1)

" _--_ is carried over theinto the body in time _t, t + At .i , (t)

particles which are present in the body at time t and whose

velocities undergo an impulsive change of ur-2 . _, inrelative

time_t.

On account of ('1.15) we have

(t)

.,. _ _"

• (t) "

t

i.
l-

(''X_r). At + o2.

(2. _7-).. • •.

e

t_
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In this, the summation is taken over all the particles which are

found in the body at time tt and

denoteu the total absolute increment in the relative velocity of

the above mentioned particles,

From the result (2.15) - (2o17) we find

/-
_.-_

(_ - ;A) x

+

A )L
(t)

X (_'X r

_-_? i .A_,(_, ._A) X
,(_)

r_r(t +At)- _r(t)_ _,_ + 0 2 •
(2.18)....

By an analogy to (1.9) we obtain an expression for the

r .at time t + _ expressed in formula (2.9)relative kinetic moment 1A

as follows:

_'r(t +/it) - .-___ - + Z_ (_ - X +/-it) _'i +
dm_ (t) . - -_
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• I/_"' r - e^ ÷ _ (_:-_: x u (t , _t) '-
41)

"_: i" r" )'i _r- ,,"_,_' r - r A +.' ( - r A X (t + _.t) ,

(el L

(2. _9).....

where .... is taken over the particles which make up the body

(t) _.
is taken over the particles which Join Center) the

P e , _"_

body in time !t, t + _?_t !! ..... is taken over the particles which
(2)

eject from the body in time ,_t. -'_(_ - _A ) denotes the absolute

increment in radius vector of the particle with respect to the point A

in time _t. Thus the radius vector _ " _A has value _ - _a ÷_(_ " _A )

at time t + /'_t. In view of (2.9), (2oq8) and (2.q9) we find

- "''" mn (_ - _^) x (t)! -
r .

(t) (t)

t im

' (t)!

..... (_) -

÷

÷ ._ _ _ _ (_- _A) x _,(t ÷ ,'_t) I , o_. (2.20).....

e..

A_so _ (_ - _A) -_, (P - Pa) + _ X (_ -_A),_: + O2, (_._).....



where i_(_ . _^) symbolises the relative increment of radius

vector _ - _A in time /_t. Therefore, restricting its value

to seco_ order infin_simal, we have

n (_:_- ra) - _r(t) n t. (2.22).....

Also

" _ r ( 0 2 •___ m_(;- ; x . - ....... m x (_- x_ _) ,_t +
(t) (t)

We know that (2.2_).....

•x (;.- ;.){: xGr + (_" _A) x (,,x = , x If;., - x ,_!

Therefore, (2.20) assumes the form

/_,t = ,_l - _,'X 1 ¢_,t - "

(1)

÷

Divide (2.2 t) by At and take the limit as z_t--,_0.

r d'_ r
dt "  ZA" (2.2._).....

stands for relative derivative with respect to time

of relative kinetic moment of the set of particles which are

found in the body.



..t-.o (1) --_(_- x ,
(,-,..26).....

denotes the per second inward relative kinetic moment of

particles about the point A, and

r \ n I" -_t)'!
laA • llm ' _ (r - rA ) X Ur(t ÷

t 0 • _, /_ t .
<a.a?).....

denotes the per second consumption of the relative kinetic

moment of particles through the surface.

r r
Homents _IA and _2A define the surface integrals over the

surface of the bod_ _nd the function to be integrated is

did:---- (F _ _A) X _r'

where d_ in the case of I;A 'dt ' is the rate (intenRity) of

incoming particles in the given point of the surface and whose

r A _, ie theradius vector ie _0 While in the case of _2A' _t

correepondin E rate of outgoing particles through the surface.

when the process ef change of mass is set up, then

d*l I

dt = O, and coneequent!y..!2o25) becomes

" ZA * (a .z8)....

A particuXar case arises when the point A coincides with

the inertial center of the badge Xn this even (202_) assumes

!
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the form:

HC HC lr d'l; r" • !c " dt " + 12c" (2.29).....

From (2.25) we get:

"r

' - 12A + n..A
(2.3o)...•.

The principal moment of Carioliso forces is given by (2.12)•

I_ case of established process of change in mass, formula (2.30)

takes the following shape:

r r (2.31)
M A = llA - 12A ÷ H A. .....

3. Motion of the Center of Inertia in a body of

Variable Mass.

1. Relative Velocit_ of the motion of inertial center=

Z= section _ 1 of Chapter ll_ a result was obtained 5y ssttin8

up a relationship between the velocities of the inertial center in

the two types of systema_ vlz, a system with a variable mass and a

solid (consolidated) system,

_ o .... dt* = '1 _--_ m_(_ - _C) (3,1),.m • "@"

In this, the summation is taken over all the material points

which build up the mechanical system under observation,
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Differentiating the radius vector of the inertial center

in respect of time when the mass is fixed, w_ g_t:

d'_

c . --1 "=_ j;jat m m . ().2).....

--O

Let vo denote the drift (transport) velocity of the

inertial center of the body. It means the velocity of the

geometrical point of the body which coincides with the inertial

center at a given time.

According to Eulerts formula, the velocity of _-th point

is given by:

= v c +,'-'X - ), (_.3). .................

where _'. is the angular velocity of the rotation of the body,

rj and r c respectively denote the radius vectors of the point

under observation and of the inertial center of the body.

In view of (3.2) and (3.3), in the case of a solid body we

hav@l

d$;e
• () _)• • _ • • OooOO

dt c

_n case of a body with a variable mass, (),1) i8, therefore,

transformed intos
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.v_÷ J!-.- (r r c) t dV¢ m _ " _ '"
B 6 -

. (3.5).....

Here (X, y, z, t) characterizes the density of the body.

The integral is taken over the volume of body. This gives:

-r 1-1- (r r o)VC m - _d _"m "" \_t " '
Pj

i

(3.6). ....

vc-r= _o - _: is the called the velocity of the inertial

center with respect to the frame of reference the body.

2. Relative and Carioliso Acceleration of the Motion

of the Inertial Center.

Motion of the center of the inertia of a body with a

variable mass with reference to the frame of the body may be

characterized by the cariolieo and the relative accelerations.

We will, therefore, focus our attention on these and find

expressions for them.

We know that the carioliso acceleration is equal to:

Wcar - 2 eta v r. (3-7)--.-.
c c

Taking into consideration (3.3), (3.6) and (3.7) we obtain:

¢ m
(3.8).....

• °

r

J
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The absolvte derivative of a relative velocity is

equal to:

r
c - Wr + X vr 43.9)

dt c C • "'''"

where W r is relative acceleration of the inertial center of
¢

the bodye

Differentiating 43.6) in respect of time, we get:

r . ,/,

c m ',_,'
dt 2

m ...:

(_ - r c) _'/_ ,
m ,: , (r -r c) _ d_ ÷

t° i "

I . (v " C W d'7 " (3.10).....

In view of (3.5) and (3.6), it _an be written as:

(3._)....

From (3.9) and (3.11) the relativ_ ccceleratieu of the inertial

I

f

center is found to bez

,.. -_t 2 m C"
(_.12).....
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The total acceleration of the center of inertia is

equal to:

W • • + r + car
• 0@••@C ¢ C C

Eence W e in the drift accelera_ion of the inertial center or the
¢

acceleration of the geometrical point of a solid body which

conoides with the center of inertia at a given time.

Uniting (3°8), (3.12) and (3.13) we have W

- - u+ 2 (;-;) ;-_-j
m i _ t2 c

(3.1_).....

(3.14) can also be obtained from the relation linking the

accelerations of the centers of inertia in the two systems1 viz,_

system with a variable mass and a consolidatd (rigid) system

(Section 1, Chapter II).

Actually, in view of (3.3)_ accelerations of the geometnical

points of the body are equal tel-

w:l " _ + _::'x (;,1 " ;Q) + _ x (;:1 " ;c )'

• °

{, where Z - .. d_J
._,. dt

denote8 angular acceleration,

(3.1_).....

i
+: • !

L :_-_



-249--

Since tho accelerations of the inertial center of a rigid

system are expressed in the form:-

d2*r-
, 1 _-'C :z ----- / m w

dr2 m :- .... .,I ,I'
J

Therefore, by (3.1_) and (3.3) we find

d2°_

• c .yo (3.16).....
dr2 c ..............

Applying (3o16), we can obtain (3.14) directly from (1.21) of

Chapter l_.

3- _esherk_'s case: In Mesherky's case, the process of

change of mass takes place only in surface points of the body, the

integral in (3.6) must be computed over the surface of the body.

Consequently, we get:

6 +
-E', • c W as- (3.17).....

In the., v(x, _, _, t) ts the density of the surface layer and

ds is the surface lement.

Accordingly we have.

_ar . --2 (; -e- v c) de,m

_+++.mm_l.,.,m_

(_._8)....o
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vro 1.!_m \' (r "-_c ) "7 ds - 2 "-a"- vc.m (3,19)--,--
(:)

Results (3.17), (3.18) and (3.19) enable us to estimate

the velocity and th6 acceleration of the motion of the inertial

center of the body with a variable mass, when the process of

change of mass takes place in the surface points.

i,

i

4. Angular velocity of the rotation of the Principal

Axes of Inertia_

1. The components of velocity of the rotation of the

principal axes of inertia in a body with a variable mass.

In the book on the mathematical theory of the motion of

uncontrolled rockets, R.A. Rankin (refers to ) (82) a result for

the turning velocity of the principal inertial axes.

S

'_;_',,. z y x z y x."

d _, (4._).....

where Ix, Iy, I z are the principal moments of the inertia and

_, _, _ are unit vectors in the directions of the principal axes

x, y, ze Let us explain the method of obtaining the result (4.1).

Let us consider a syste_ of coordinates (x, y, z) firmly

connected with the body of a variable mass. Let its origin be

placed at any point of the body. Then the moment of inertia of the

Body about the axis _, passing through the origin and having

direction casinos _, /3 _is equal to, in consonance with the

J

J
° l

...... .... j
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mmu

transformation of the tensor componentB of inertia,

zz ix _2+zy_2+ z,_2 2z,/,:_ _2Zxzi,"_. 2Zxy ' ,_

The above result uses the tensor components of the inertia

of the body• If the principal axis of the inertia is taken as

then we must have

(4.2)....

l,

I1 = 0 (4. o....

.... " " satisfying the conditionfor any variations .jyj, c.., ,: ! ,

=- (_:2 + /2 ÷ )2) = o.

Rewriti=g (4. 3) and (4.4), we get

(lx'_" XXy 7" Ixz )') _ + ( "lxy_ + ly,/!- lyz_!' ) _'

+ (- lxz_- Iyz/+ "rz_') =0,

÷

(4.4). ....

(_.5)-e---

_.,-._+ + i_? = o.
¢

i
l

From above, it follows that:

I x - Ix3 r.l_- IX= ),"

This gives

= XY ,, = _

/%

(4.6).....

(4.?).....

L ..........
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(Ix _- Ixy _- Ixz_r ) th -- (- Ixy
/- I ),_

_-+ ly yz/
(4.8).....

Differentiating (4.8) in respect of time, we have

(I x " _- I ;- I ",') _ + (I ?- Iv" Ixy/;" Ixz_ + Ix xy/ xz,_ , x xy,
m ; mIxz , )

Ixy Zy/ Iy '" (- O+ - )-I
z_ xy

,J

j;+ Iy/÷ - Iy z/) _'+

Ixy._ ' ly z ]
,_. )_- .

+ ( - +ly (4.9). ....

Equation (4.9) induces a dependence upon the velocity of change

of the moments of inertia, calculated with reference to a fixed system

of coordinates, and the velocity of the chanEe of direction cosines

of the principal axis of the inertia.

Now, we arrange the system of coordinates in such a way that

at a given time the axes x, y, z, coincide with the principal axes of

the inetria of the body. Therefore, at a given time the tensor of

inertia and its derivative in respect of time are equal to:

L

I I

i Ix 0
0 Iy

0 0

o , I--x,v y x, i ,

_ . I - ly z IIs'' it xz z i

where Ix, Iy, I z are the principal moments of inertia; Ixy ,

Ixz, Iy z are centrifugal moments of inertia which at a given

time are equal to zero. Moreov.r, when the inertia axis
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coincides with x-axis we have|-

_-'= I, /%" O, _'= O.

In this case., (4.9) gives.

(_. 1o).....

Consider a geometrical point at unit distance from the

origin and lying on the axis { whose direction cosines are

OcV-_,_._...__ 1 _/. When the principal axes of the inertial rotate,

this point will move in respect of the system of coordinates

and its vslocity is equal to

where _, _, R are the unit vectors directed along the axes

x, y, z; _ _ a unit vector in the direction Of _; _ ie the

angular velocity of rotation of the principal axss;__t x,._'_y,._m

are component of_ along the axes x, y, z reapectivel_.

AssumlnK that _ It : _ = 0," I = 0 (4.11) reduces tO
I

J
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Comparing the two sides, we find

v Z •

Uniting (4.10) or (4.12), we hav_

I
x_

"-z I -i
y x

(4.12).....

Similarly, it will be seen that

w

I I

_"x I - I '" y I - I
z y x z

Hence, the vector giving the angular velocity of rotation of

the principal axes of inertia is equal to:

z y x z y x

This loads us to the result (4.1)o

In working out (4.1) we assumed that the origin of the

b

system of coordinates coincides with some point of the body. It

may happen that this point coincides with the inertial center at

a given time or be itself the center of the inertia if it does not

change its position in the boa

\ ._A



/

")C

2, Meaherkyts case: In the absence of the internal motion

of particles_ the volume integral in (4,1) must be replaced

by the double integral over the surface of the hod 7. Thus

(_._3). ....

..... 000 .....

L.__._..,.j_ •
, ,. _. _............;._ ..... ;-...._ L ± ._ ..................... \
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CHAPTER VI

MOTION OF THE GYROSCOPIC BODIES . JI_<l[ VA.{IA_L_ l,AoS,o.

In many problems related to modern technolo ;y it is important

to investigate the notion of the fast rotating Kinetic (ally)

syml_letrical bodies with variable masses. We will consider a few

problems relating to the nlotion of such bodies in a model set up.

I. Re_alar Precession of the G_rosco2rJ of Variable l[ass.

I. Equation of notion. Gyroscope of variable mass means a

body of variable m_'ss which h_s a fixed point and possess the

kinetic symmetry and whose principal directions remain inw_riant

(are conserved). The _asses of the points of the body will be

ta!:en as explicit functions of time. The process of ch_n_e of mass

will be treated as of _iesherl:y's type (i.e., the p_.rticles joint or

seperate (ejo_-t) fro;_ the surface). It will bo ",_sumod th-t the

principal vector of the reaction forces is equal to zero and the

principal moment of reaction force= about the fixed point of the

gyroscope is directed along the axis of the syrlmetry and is expressed

by a function of time, say, K(t).

1

-V

r

and

Let @ - be the angle of nutation, "['_- ancle of precession

- angle of self rotation of the gyroscope. Then the kinetic

energy is equal to:-

T = "_-" A (@2 ÷ _ 2.,

4
-1
1

I
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where A and C are the moments of inertia of the gyroscop,: and

they are known functions of time.

The virtual worh of the usual forces is:

In this _ • - is a symbol of variation for the computation of

which mass i_ supported to be fixed. Obviously, the force func.tion

of the gravity has the form:

U = - mgl cos _,

where, mgl is known function of time.

Set up virtual work of the reaction force,

K(t) (_ + cos _ 6_ ),

where K(t) - is principal moment of the reaction forces.

In the pl'esent case, there exists a special Lagranges

function:

r-

,iA (
L

÷

(1.1)

and the following Lagranges' equations will be useful:

7
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d" _'L1 "_'L1
-- ,.... _- 0 t
dt "_0 "_

i

a _L I _'LI 1_(t)cos 0

_'LI "_L1 l{(t).

Using (1.1), we write (1.2) in detail:

(1.2)

A _- A_ 2 sin _cos_ + C (_+_cosO)_sin 0 = mgl sin0,

d d 4._c_sO) cos = K(t)

_qur_tions (1.3) are rewritten as:

• t

o

A(_- A_2 sin Ocos_÷ Cn_sin@= mgl sin(_,

A_ ($,_2e). c__i_0_ o

cos 0

(1.3)

(1.4)

(1.5)

(1.6)

0 _nvesti_ation o.f Motign_, Let us Study .the M,ot.ion

Confirmin _ to the. Cond%tion.s:

 -eo & io= C011St_ = -- COTiStl (1.7)



I

This type of motion is called a regular procession of the

gyroscope of a variable mass. When such a motion takes place,

the angular velocity of self rotation is given by:

t

@o K(t)_Oreg = reg ÷ _ --_ dt. (1.8)
O

If ,,.re exclude the case when sin I_o = O, equation (1.5)

assumes the form:

°

0 0 0

Equation (q.6) is autonatically satisfied.

Formula (q.9) determines tlle condition of regular precession.

Suppose _o and _o satisfy the relation (q.9) at somo time and

then it is also satisfied by 9 o and _o in a sIT1allinterval of time.

Then the systell of the differential equations of the gyroscope

(1.3) has a unique solution (1.7) - (1.8).

We will show that the regular precession has the character

of stable notion of the gyroscope of variable m_ss. Set up:

CnA ' A '

then (1.5) and (1.6) b come:

a ($ sin20) I O.- =

(1.1o)

(1.11)

I

I

!

I
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T

Writinz condition (1.9) in the new rotation, we have:

<_ooo_ __ o (1.12)
o O F o

Put in (I,10) value of ¢ from (1.12) and _ sin_ from (1.11)t

we get:

(1.13)

Equation (1.13) is equivalent to:

_0_-_ _o_o_o_0__o__oo0oooo0Jo.cl._ + "

From here _te get (1.7) the inbegral of the sy:;te_l (1.10) -

(1.11) vhich _'_7_ish's in the form:

i_t_t

+_-_ooOO°o<°°°°-ooooO>.

(1.14)

(1.15)

Integral (1.14) assumes the form:

_2 + (_2_2+o _/2)sin20 o

Therefore, for considerably Sl,_allvalues of _, _and % the
/

integral (1.14) in a positive funct_.u and the stability corresponding

to these values follows from Lyapnob's fundar:_ental theorem.

l

l

i
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't

,J

T

Ou account of (1.15) and (1.8), equation (1.4) is written

IIence,

r--

_ +4) sin (o÷ iC o o
L_

(1.16)

where the index "cp" indicates tile cp symbol of _veraGin;_. It is

seen from (1.16) that the stability corresponding to the values

and_ ensures stability correspondin_ to the value _.

2. InvPs,ti_ation About the _tability of tl_eyertica_

Position of the G2roscone of a Variable Mass.

The present paragraph exar_ines, from a purely theoretical

point of view, stability condition of the vertical position of the

gyroscope in which the internal motion of t_e particles is assumed.

I. Equations of s_all oscillations of th_ gyroscope around

the vertical direction. We will obtain the equation of "apex" of

gyroscope. Let us suppose that only the ejection of particles takes

place (without addition).

The law of chanse of the kinetic zlo_ent of the body about the

fixed point with possible in_ernal motion of the particles is given

by:

,
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d •

d--T I - Z + _. (2.1)

where [ - A (CO x [ +O_y_) + COOz_ - is the kinetic moment; _, 3, _;

A and C - are uoments of inertia; COx,dOy , CO z - are the projections

d"
of the angular velocity; -_ - stands for the derivative in respect

of ti,_e for the computation of which masses are supposed to be

fixed. T, and _ are moments of action forces and of those forces

which are brought into play by a variation of mass.

Denote by _ the velocity of the terminus of the vector

(i.e. ':apex" of gyroscope), w_ got:

(2.2)

Therefore, the kinetic moment is written as:

(2.3_

Hence equation (2.1) becomes:

A _ x _v)÷ c_ ÷ coo _ _-Z ÷ n.
Z

(2.4)

The moments of action forces include the moments of gravity

and the moments of res_ tance to the motion of the gyroscope

including damping forces of the separated (ejected) particles.

Neglecting th_ friction and taking into account (2.2) we have

(a.5.)

F

.q

_ ..... J

In this, h - is the distance of the center of gravity from the

suspension point (Value of h will be greater than zero, equal to
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zero or less than zero depending upon the center of gravity lying

above the fixed point or coinciding with it or lying below the

suspension point); m(t) - mass; wl " is a positive function of time

and v2 - is a positive constant ( vI and v 2 characterize resistance

and dare,ping). '_fnenthe rotation is rapid, the resistance v 2 _z

may be replaced by an experimentally deter:_ined resistance function

f(0%).

It is not difficult to construct such a gyroscope in which

the relative kinetic moment of the particles moving in the gyroscope

is zero. Taking into consideration the results obtained in Chapter V,

the moment _ in case of such a construction is written in the form:

Ir le dl d*I
=" - " _ + d--q--"' (2.6)

Where Ir - is the per second outflow (consumption) of the rel: .ve

kinetic moment of the particles through the surface of the £ scope;

_e - is the per second outflow of the drift kinetic moment :he

particles through the same surface.

The process by which the particles rush out is assumed to

be symmetric. Therefore, we have:

where K - is a lmown function of time.
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(2.8)

In (2.8) rl and _2 are known f::nction of time which correspond

to the inertial moments of per second consumption of mass. Let us

examine the gyroscopes for which _1/>/_' _ _/CI" The functions

of time K, _ and _21 can be experimentally found like A, C, h, m

and V1.

The multiplying equation (2.4) scalarly and vectorially by

and using (2.5) an! (2.8) we get:

co3 .( + . zz _. v 2 c.) oo = K, (2.9)

A_= C_o(£z x _) - Av2_ +h£x (_x m_) - (/-L1 ÷vl.A);.

(2.1o)

Equation (2.10) in aEreement with the terminology used by is called

equation of the apex of gyroscope.

i

Zquation (2.9) has solution:

- _ _#_A: _2÷ o e2 ÷ _ .o
o O t " "C-

= e + __ K e 0-if- .
o

(2.11)

I

L. __Jl
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When the gyroscope rotates rapidly, _esi_ance is no more

linear (does not act linearly) and equation of rotation roun,_ the

actual axiQ may be appropriately integrated.

It is easy to see that the equation (2.10) has a particular

solution:

E = = o (2.1o)

where a - is unit vector of vertical axis.

Let us discuss the stability of the vertical position (2.12).

In order so do this, we will obtain equations of the first

approximntion. Put _ = _ + _. Take a fixed system of coordinates

( _ W ' _)' which has its origin at the end of the vector a. Let
J

the axes Ofland O_be the horizontal and let O_ be vertical downward.

We have

The project equation (2.10) on O_and 0-_, on first

approximation in respect of and and their derivat_ve_ we get:

(2.14)

!
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I

q

where _-- _ _ C o_ _ _-
A ' .-- "--A-"" '

functions of time.

_1 +, Vl + _',
A

are bounded

For /_w_ have:

-- I -

Therefore, it fellers that the motion in the direction_, _7 and

_is also stable.

DISCUSSION

2. General development about the stability of motion. Multiplying

the first equation o£ the systeln (2.14) bye,

a

by__nd second

and then adding them together we get:

/

where

V = _2 + _2 .00( _2 + _72). (2,16)

2 ::

Suppose that the center of gravity is situated below the

fixed point, then h CO and, consequently, _ d.O. Fuuction V will

be completely determined. Since _I_ ' to_ .-.O, therefore,

• Let _be a montonic increasinz function. In this case, as

is seen from (2.15), the derivative dd_ V turns out to be

negatively deter_uined. _or considers bly small inertial values

d
d-'_ V remains ne:;ative, if we calculate this from th_ non-linear

equations of the motion of gyroscope, because the terms of the second

and higher order do no_ influence the sign of the first part in (2.15).

1
I

, 1
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It is, therefore, inferred, from Lyapnob's theorem, that the

vertical position of gyroscope possess_.s a sympotic stability.

l!ow, suppose the center of the gravity coincides with the

fixed point, then h = O. By Lyapnob's theorem, _e will prove that

asymptotic stability corresponding to the values /_ and _will also

be small and for their evaluation, we may use equations of the

first approx:_lation (1.14) which yield:

t

- 2 F
, 0

÷ •
/7 --

If the process of change of r_ass tahe_ place for a fiuite

interval of time only, and if the air rezistance can be neglected,

then for t _T the coefficients of the _ystem (2.14) will be

constant.

Characteristic __u:_t_on is Written in the Form:

In order to satisfy condition, it is necessary and sufficient

that_O. Therefore, if h is negative at time t, the -,ertical

position of th_ gyroscope will be stable. The character of the

gyroscope motion may be studied by the method of B.V. BulGakov _.

t

Suppose the coefficients in equations of the system (2.14)

approximate to the finite limits as t-@ _u. Assuming v_ = O, we

obtain a limiting system with constant coefficients. If the

limiting value _is less than zero, then the vertical position of
t

\
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i

the gyroscope possesses sta;_ility accordin3 to the t Leorem of

K.P. Percidsko _.

@ Stabilit2 of Vertical Posit ign of t]_9 Gyrosc0_e

when _there _is no__Internal. Motion of the Particles.

In the absence of internal m_tion of the particles in a

gyroscope, for example, in case of surface hcatinc, we have

Negl_cting the air resistance, then in view of (2.11) and (2.14)

we get:

t

C_ z =o._o + _ K• z -_ dt, (2.18)
O

- •
(2.1_)

de will first prove a theorem about the approximation of

the solution of a system of the linear differential equations with

variable coefficients.

Suppose we are given a linear system:

dX. n

_ aid'---_= = jxj (i = I, 2, ..., n), (2.20)
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_./hore aij - are continuou_ f_n_tions of time and/ai_a for
| )

0 _t<_• Take an arbitrary inte2'vai! of time (O,T) and divide it

by points to, tl, t2, •.., tin_I - T -X, tm = T + "U-%into m parts

such that ti+ I - ti = _', X _[', write the :._)proxim:ring system:

dy i n

d-'_= _=I alJYJ

where:

aij(O) for 0 _t < tl,

) t1_ t<t 2 ,
a aij(tl , (2•aa)

i t • •

l • • Iaij(tm_ I) ,i tin.q _t _T.

Theorem then states that £or arbitrarily small_ >0 and

T >0 arbitrarily large "6 _-0, it is possible to choose a fairly

o o uO_t _T andshall q_>O, such that xi = Yi

(a.23)

1.

The roztinuous solution of the system (2.21) with initial

condition (Value) y_ is unique• In order to find Yi apply the

method of successive approximations taking x i as the zero

approximation° From (2.@I) we have:
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o I

Yi -- Yi ÷ f aiJyjdt'
O

The first approximation is written as:

Yil -- xi ÷ _-_-n.lc (a'lj - aij) xjat.

It follows that:

2

I *
L ,. ___ J

Yil - xi/ _ _A (T) nt,

in u':ich we have used the property of boundedness of the integrand

fun©tion:

aij - ai _ _ , _ A (T).

Further we have:

t n

Yi2 " Yiq = J
O j=l

a' - xj) dt_ij (Yjl

Yi2 Yil/ <_ A (T), (ant) 2" a 21

Accordingly, we get:

Yik Yl, k-I/ <I A (T) (ant) k" a kl

As a _esult:

Yl = xi + "/'_'_
n=1

(Yin" Yi, n-q )'

Yi " xi/ _6 A (T) (eant - I).a

J

"k

!
i
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S_nco the functions aij - are c_:n_[nuou,_, therefore, in

_he closed interval [9, T_ t.,e_r;'re unifo_':'ly cont:.nuous.

Con:;equently, it is re,!uir_d to find su_'1 c-vt:

This proves (2.23). It :_cy be re:_rked th t the above valu:_tion

will oo uniform in re:_pect of T vhen q_varies.

Let u_ discuss the stc,bility of zero solution of the sy:_tem

(2,19). Thi,_ is a linear systerl andthe theorem nov no_; proved

applies to it.

Consider the an_roxim_tin : system:

= - _' y +oC'," 1Xl 1 "" '

_"I = " /_' Xl ÷ OC' YI"

(2.24)

where _' and #' - are constants obtained by the rule of

approximation (2._2), Assuming u -- xI + iYs, i -7 - I

system (2.24) reduces to a sinTlo equation:

, the

_" - i_' u- 0_ u= 9. (a.25)

For j-th interval, ue h:ve:

• - i - : 0.
(2.a6)

m
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Jet up

uj --_je , (2.27)

ti_en for the variable we find the equation:j'

2

÷ (-_ - %) -_,,_= o. (2.28)

(2.27) _Lnd (2.28) sho't that the r_lotion of the -)oint with

coord._n:'tes xI :tnd Yl may be look_d upon as combination of the

relative l_otion in conforrlity with the equation (2.28) and the

drift motion of the uniform rotation whose anf;ul'r velocity is

__L
2 "

We see th._t the stability of zero solution of the system

(2.24) follo_Is f_om the stability o? sequence of fun:tions'_U, and
J

_ because, on account of (2.27) we have:

l' I- I.
The solution in u and _ must be continuous. Thorcfore, by

virtue of (2.29) we obtain tho followins conditions in _oin_ from

j-th interval to j + 1 -th.

_(T) = pj+1(o), pj(_) . _j+1(o), (2.3o)

where Bi_
ooj('C) _--_ . o_S + i(o),
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where __j - Jr'a4 ; co. - is the ctn;]u!r velocity in h1_e rel_tiveJ

motion or derivative in respect of time of the :Lrju_lent of cumplex

Suppose _- 0C _0. Denotin C t is value for j-th interval

b2, we obtain the obvious integr:_,ls of cou_,tion (2.28).by
J

2 2 2

_ j ÷ bj _j -- Hj, iij = const,
(2.31)

2

_j fj =

. -. Q jwhere Vrj : +

_j, ¢j= const, (2.32)

- is cel:_ti,'e velocity in j-th interw_l.

Zqu_tion (2.3@) and (L.32) yield

I T
i=o

(2.33)

Suppose b2 di_:inishes (not _z"'_'_.c_ly)_" .

(2.33), we have

zh n from (2.30) -

• LL _ 2(llj+1 = Ho + (b[+l _. a _I: _ (_i T) +
i: o k: i÷ i

B2 R_(_)
+ (bj+ I - b ) _j( '= .

(2.34)

The te1_r_sin the first bracket are equo,l to:

i
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"7

2 i " (dt 2 i 2

,,cp" denotes the average of i-th interval;

derivatives computed at time ti_ I.

(a.35)

¢i _.uld _.z - are

Since b2 diminishes, then for sufficient average velocities

#_,',in p',_<_- take .... 0c%0. Particulnrly for ttnv i <qnd J,we ..1.,, 2

2

From (2.34) and (2.35), ,<,eget

H j÷ I_I[ ° + 2 / _'o/ fm'_.z + ;.:];(T) "g (T +'K),

who re

Id2b 2 '/

_.I-_p ( l---_-t_I +/.,.i1,_++/_1'_.i_(m)= _up p2.

Suppose the initial values are taken to be adequately small,

then, assumin:: that

_<_ _ _2 1t
L_Y:r(T)(_+._--) '-T" ,

_;e get

i
I

L i , , ..... _ 'h -;; j _=__ _ -- _ ......

i
I

-i
q

I
I

I
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" 2 b 2 /)/_o/ZU p2 +b=p _(2 + ÷ 2 _)g2. (2._7)
v r o

Since (2.37) do:s not depend upon T, thor;fore, it will

remain true for the interval O_t<o_.

It is interesting to consider the case when _ and b2 increase

('_t strictly). The expression

2 2

-_--_-- G , w const, Gj const (2.35)÷ = -- =

b2P*2 b_ J3

will be si_lil-r?y on the into_3ral of equ=_tion (2.28) on j-th

interval. By virtue of (2.30) - (2.33) and (2.3g), ve h_ve

vh To

_j_ _i _ _i+1 -'±,2 .i
sij = 2_. + b_p + _ "'-._;_2 + b2p+a +"'+'."2_.2)"

bi+l :x °i+2 i+3 b j+l

;_ince b 2 - is an incroasinc fun,%ion, _.le h_ve

B i

and also

3
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÷
b2P

cp

+ 2b2p+2 (_j+1 - _i+I ) "

Lets up _< q _o for some nuE._b,_'rq. When the relative

velocities of the separatin_ particles are sufficient_.y large, we

have p >_ /_ Therefore, we can find a sufficiently large p such

th._t

_ - q + 1 _ _+ m _0..... 2 " o _

IIence for a sufficiently small and u'henever, the inequality

Iv°r' iQo

is satisfied

2
v r _ 2

b2p+2 ÷-b---_ _ (I +_Ib _+2_'+a su_ _ + b2pI ) _2.
o o

We h_ve shown th_,t in the above two situation th_ vertical

position of the zyroscopo possesses stability of the first

approximation.

. Transition to Equation of the A_pliod Theor.v of

th e Gyroscopes for_roscoDic Sj.steD with

_riable Ha ss.es.

In order to investigate the motion of a systei:_ with the

gyroscopes we usually introduce the secon,_ d _'iw_tives Lacra.u,_ain

coordinates in the line,_r_ ned e_,.u_tions [7, 26-2_, 3_, 40_.

Let us study the gyroscopic sy_ter_s with variuble coe Cficients,
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The proposed method of the investigation based on the chan_e of

independent variable is quite interestln_. This method envisages

to use equations developed with the help of applied theory of the

gyroscopes under conditions of change of mass and considerable changes

in the position of the coordinates and the velocities.

Equations of the motion of Gyroscopic Systems

Kith Vai'iable Masses.

We will study the general case of the motion of gyroscopic

syJtems, assuming the arbitrary dependence of the :notion and the

mass of gyroscopic system on time ana also unsteady inherent

rotation of the gyroscopes.

The .tic energy of gyroscopic system with r gyroscopes

and S position coordinates is

o ( + akqk + avo)2.

(}._)

- respectively d_note the quadratic

T_

T = T' 2 + T' + T' + _ ___ C1 2 v

where T'2, T' and T'I o

linear and zero forms of the positional velocities qi,_ v - are

cyclic coordinntes, representing the angles of the inherent

rotation of the _yroscopes; C v - is the axial moment of the

v is cosine of the angle between theinertia of v.th gyroscope; ak -

vector of the angular velocity qk and the axis of V-the gyroscope;

a8 - is proJ ction of the angular velocity of on tho axis of v-th

gyroscope.
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t ira4,
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depend upon position vectors and

Suppose the generalized usual and reaction forces

responding; to the cyclic coordinates are explicit functions of

time. Forming the Lagrangiam equations of the second type for

the cyclic coordinates _ , we have

av (3.2)+ + =H÷h v ,c_v akqk o

where H - is a constant which is sufficiently large H).h_ , h v-

are fun_:tions of time containing r -- q con:_tants.

Introduce Roryc's function

V V r v

R (_i' qi' t) = T - v_=ICv (l{ + hv )_, , T = T (_i' qi''_b (3_i'qi 'H'T))_

Then Lagrangiam e uations of the second type for the posution

coordinates can be written as:

V V

d" "D'R _'R -- Qi +%" (3.3)

i -

Here the derivatives are calculated by keeping the ,_lass fixed.

_r i - represent the generalized reaction forces. Rayc's function

in accordance with (3.1) and (3.2) is expressed

R = T' + _1C_ (I{ ÷ h_ ) ( k_=_1 akq k - -_- C (}{ + hV V
)2

(3.4)

T t = T l ÷ n.l T t
2 " I ÷ o'



-27 9-

where the last member (te-m) is explicit fun_;tioi: of time.

In (3.4), T' r<_resent.'3 the I:i,etic c'nerKy of the absolute

mot i-on _f e!ments of th_ gyroscopic systeJ:_, c :_in_ an4 motor,__ of

gyrosopes, _:Jswell ;_s kinetic _nerL'y of motion of the rotors them-

selves around their o,m axis. Let us record e_!uation (_-3) with

the help of (3.J_-) as fo].lo,,s:

S S

gik,ik + giO) + O i -- C (3._)

]{ere the followin& _ symbol,q ar_; _ntrod._ce,_:

r -_a_

v= 1 v -'I

v S

k="

v

.._2" T

aikq k, aik--_r.{i-_.] k

(-6 ."., et))

..... k_
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If the equations of the motion '.,re written accor,linl; to

the method of applied theory of the 5yro_copes, we as.'mme T = O.

Denoting the position coordin,_,tes by "':i'we get

gikgk + gio ) - _i = O, (3.7)

,#

where in gik' i'_i° the po_itj.on coordinates an in (_i _h: p.o:-_it_on

coordinr_te,'_ a:'d the velocities are r,'place "_ hy gi and gi"

.If the g_ro;_copic nyst_m i._ laid on a ,1:.:e_ foundr, tion

V

...._,el: _a_/_t = O, avo = 0 :u_d conseruent]v gio = O.

In c_,_e of real gy_-'oscopic systems cr. a mobile foand_tion,

coefficie,_.t gio may haw: :'.na:1,,._i:_:"vel.ocity, of fn.irly _r,t,all

m:_gnitude in the e,_rt} Is rot_,.tiou. The fendulum mom,:mt, however,

which is i;;cluded in .i, i,'.;close to the value l[ in some gyro_copic

sy,stem_. '_herefore I we will focus our nttentinn o_ special features

iu each cozcrete systel_J. Coefficients aik , gik al_,_ gio or order H ,_ot

high,_r %_an zero-an:'; all functi_ms (3.:;) facto-_'-:_g ._,n_owe-_" s ...tie:,.

.;e will assume that th.e dete_'minant of tho matrix of the

If#/gyroeoopi," t,.z'm:" gi is different frnm ze_,o.

Let u_; ._-onsi_ev the ,_iffer_utial equations iuvo._vi_If, the

s_:_l._ p'_ral,,et.r_',,:
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s, (1) (1) }, 1) _ I{-1 (9 (t)
_- gik ql.:l ÷ 6io ÷ _. i = 0.

Symbol (1) indicates that in these fun_-tinns the position

coordinates and velocities are replaced by variables qil and qil"

In accordance _.tith Pcincrr's ::iethod of sz_all p,ural:,eter _14j,

the var%ables qil and _iI are deteruin_d by equations (3.7) upto

terus of order. In uarticular, if _= }i"I _ we hqve

{qil " _i' _in - 6i_ = o (I_'_). (5.3)

0 Motion ,f the G__r0sco_._._S_[stem Placed err.a.

Fixed Foun,,ation.

_n the first instance, consider a stable system:, and obtain

the !inear."zcd ,_uations.

When the positioncoc_-dinntes q1' "°" ' qs and tu_,]r ueriv-atives

are sligl:tly disturbed, the natural, osc:l!ations of the stable

gyroscopic systerd_ are deterrr,ined from the equrLtions

" ik + " Cikqi
(>.9)

in which a considerably lar,_e positive con_;tant I{ rDpresents the

least value of the an,;ular velocities of the syste:_ in res:2ect of

' _ :_f i,_;the matri× of po3itive definitethe gyrosocpic ax:.s, all

quadratic form. The coefficients in the _,qu'_tion (3,9) are sounded

functions of time and h_ve zern order '..n_espect of H. The stable
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system cannot have solutions of order hitcher t}_an zero in reop ct

of H. The indices i and k rnn,:e f_om I to S, the s_me two indices

of ( in) mul.ti.pl-io+r-s l,_eansthe su,lu',tion.

Wewill study the soluti'on of the two _.7:_te_sof e,!u' tions

(bik + Hgik) c'liq + Cikqk q - O, (3.1o)

_'il[_l:a * (bik + _h'_it:) _k_. ffi O. (3.qI)

Since the deter inant of the I1:_trix of the gyroscopic

ele /,nts is different from zeyo, therefore, when H is large the

_1_te,_,(3.1o)_n _osolvedfo_,//%_I_'_h__te_,(_.11)ca_ ,lw_s

be solved for qk2"

de will show that the solution of the s_steH (3.9) satisfying

the conditions t = O, qi = q_' qi = q_' in any finite interval of

time (precisely upto the value of order H -I is written in qil and

qi2"

Assuming the following initial conditions

o o
qiq = qi' ib_k (0) ÷ Hgi_ (o)] _1 ÷ ci_ (o) o _-o,k

(3.12)

o o o o (3.13)%a = o, _±a = _i " _iI"

Changing to new indenendent variables "_I = H'It in (3.I0)

and T 2 = ilt in (3.11) and denoting the derivatives in respect of

new independent variables by "dashes" we get:

I



_ _. 0 1(H'Ibik ÷ gik ) q'kl + Cikgkl

(H'Ibik + gik ) q"kl ÷ (Sik ÷ H_ik ÷ Cik) q'kl e ]I_'ikqkl - O,

a q" ÷ (I['Ibik ÷ ' - O, = (fikqk2)t Iik k2 gik ) qlq2 qi2 o" fikq{<2 tit'

(3.14)

(3.15)

where fik 8re bounded funr;ti_ns of zero order in H obtained by

selvinc the first group of equation (3.15) in respect of q'i2" The

derivatives fik cannot have order higher than zero in If.

(I)
and q[2) satlsfying the initialThe motions described by qi

conditions (3.12) and (3.13) are called the precession _nd the

mutation of the gyroscopic system (3.9). A solution of the system

(3.9) which satisfies the _eneral conditions is q_1) ÷ q_2).

= qil + x1' q = qi2 + Yi" The variables x i and Yi are

obtained as the particular solutions satisfyin: the zero initial

conditions of the equations

aikx k + (bik ÷ Hgik ) kk + CikX k = - H-2aikq_1, (3.16)

aikYk + (bik + Hgik) Yk + CikYk = " Cikqk2" (3.17)

It is seen from the system of equations (3.14) and (3.15)

" havethat in a finite interval of time _O,T_ the variables qk I

order H and qik have order H "I. In accordance with (3.16) and

(3.17) we cot

@
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{ I'_:.i)_..;_'i' _i' _'i = 0 (][-l). (.",.I,,)

Th,.: v'.ri'ti,le,_ _iI ::uJ '!i2 :"J"' oC tJ__ ,_'_,_r H"I .._i,i,

t}_,_.rcfol-e_ it follo,:_ LP,_.... .....

qt = qil + 0 (;[-1), _*i = '%i;: + 0 (]1-1). (5.1t_)

_i? ,=:1._,le fin_'_ |;}:.t the vn lu,:_ qil ,:11_!1 ,:' . !.o'.'1"_.. ,,:hite . _ '' >"

r:..,idl$ for _iI "" 0 (I["I ) and qi2 = 0 (I[).

l-f the s.'_te::l (3_.9) re:,-,:_:nsuLablc und,'r tit,, ute.-'_dy aet've

u,:rtu._'i,:L;L,=,, and t;lo v:_ria'._l,,s qil :_n,i qi2 nre l,oundod t then .it i_:

se,,i_ from t1..o..q*,st_:..is(_;.I:1';t (i:;°',6)tnd (7,.17) that the r,,;_ults

' ' ' ln,_.rval of ti_e.

The forc,_d o_cL].ltio_]c, in :_ stal,]._: ,'yr,> _co;,ic a:ysfe1:i

nroducod un ,'r I::' :'.cti_.;,of t]_o .:,:'uer:_lized forces fi (t)_ _:q:

be _suhsLitut,,d _:.'a p:'._-tcul: r _oluti.._n ::.,ti:;f:-in' th,_ zero i_uitial

conditions of th, ,,.f._t_._.,of _

(bik + llt'ik) _k3 + C.._icq.l:>..= f'z(t) .

The error in coordiu',tes :_s well ,:s in the vcJ.ociti,,s is

detel" in.:d--b_' a solui;io_1 stt_i:;i'jint-;ti_e '.;ez'oi ,iti,".].eon,iil:ions o1'

, . ,t m_z_t be r,._Inced hy va].u_-.q
the equations (3.16). in doin:_ t;:Is qkl

obtained for the solutLon with corr...qpondin_-: :i.niti:,l c_n_,,:tin_s o£

the see,m'-_ f:ro,,_pof t _e equations of the syste1:_ (['_,.I"F)who..:."ri!lht

}land uide is Hf i, Therefore, th, ,=rror will h've t,e order of r,"' 1<1

2
divided by H . If fk (t) poosr'sc the zero ord,,r of i[, t',o;t t!l_:

order of the erro_" does no_ exceed H"I in any interval of tihie in



_lhich fk (t) _r_ bo11_l_ed.

.le will tr _ to o_.)t;'in t!b, z'._:'itl,,:p Tit;; C,_Lth," Vnl.U ti,_nU Of

.]
0.

= _it in equ' tinny; (3.17) _l,_. .,:,_t

v" + -(:i-I " "'"ik _I_ bik + :;ik) ,:'_tl:= " '{'" "ik (q];2 ÷ Yl:)" (5.

2;u" v:_lu S q]:;! + Yk h"ve tlu: ol'do.r of il"I. in ol'dor to find

r_ n'rticul'_r :_o]ution of ,2,u:,tion:; (3.2'?) ',:th _'_,u:-,,,,re :_nl,_l

couditions it i_; u.:ce_;ut_ry to inte[:l'.Le in z,,;tm_,cL of q"2' for the

run::e o/' the intei;rnLion being fro:I zero I:o lit, thel'efore t Lhe

-)

indicated _articul:,1- solution "", o i will have the o_'d.;l"of H "_. From

c:iu' tions (3.20) _.;efind.

t # l'_dt + Yi 0 (H"2)Yi = (fikyl':.)o " ik:t O (I{"_) , = .
0

We will think that for a gyroscopic sy_tem the condition_ (a)

are satisfied, if _ik and _il: are equal to zero or their order

does not exceed H "I ',"hnn the s_.,stem (3.14) u:_ow_ th',t qil

the zero o_,der of If. Therefore, in acco_'dance with the equ:,.tions

(3.16) we get x. = 0 (II'2).

'2bus we h_ve sho_;n th'_,t

m-)

qi = qil + qJ2 + 0 (If _).

is valid in case of a s':lution of e(p,ations (3.9) with ,%rbit_"-r3

initia], couditions and which satisfi,s the con, [ ions (,_).



Let ur_ ex:: ine the ¢onsioer:iblu def.::ct;,)n of :_ 17$r,_';co::ic

s'_+e'_,=_.,.,_l:'ced o21 a fix,:d found"tion. Sunnone., the ;;en_r;_li:'ed force_

of an ,%b_5olute _otion cont:_._n on].',.,the tor_._s of zero ord,:P n' _.

We :,nticip:,te a soluti_m of th,, foru of the equ'_tions (3.%).

qi = qil (.,:-'It)+ ::i (Ht). (3.21)

"_he variables qil in thi.'-,case s._tit:.:['ytile oqu tions

_ _(1) (1)
'iI:_I_I÷ -Oi = o. (5.22)

Ausu_v,, the follo_;int" init_s! c,,n,i:[tions

o o o (1) o_1 + _2(1) oqil = qi' xi = O, "" gik ": i

_r I °_mlLet us deteL,.: the de1"ivatives for the ,_.lh;uments: = ;_ t

_2 = lit by, ",,.oMits". If -_gih/(1)/'_Jt and _-i/_t _,'c-,, equal to

."..ere o_" their order does not eXer,,'d ,q-1-- _ t}',e}tthe /;,jroscooic system

s:_..tisfies the e:_nditions (a). It i_ sem_ f_ola the e,'u:,tions (3.22)

and the conditions (3.23) t!mt qil nnd o' :_o _<;s:_ the .';era,o2'der of_iI

II. Further, qil" h ve ._n ord,l" I[, hut t-_h_n th,_ c-,n,iitions (-) ........

s_.tisfi,_d it h_s zero o'der of H.

Witi_ the _elT_ O_ "" _'_(.....r,), (_Z.21) , ( _....=) ;_n,, the e,lu tioits :'io = 0

we obta n the fnllov:in:i e;,u::tions to find x.
1

-2

:_ik (q 1 (II'2 "_) + )t_ m i['1%) x" + (q (I[ -'7" 2) ÷ x T -1. k i_:il¢ _1 ,.',I_ 2)

x I +
k

I

I



_,,.0,7.

÷ :" i ('I Y1 (][-2 q-2) ÷ x y, II"1 (I? 1 (!l"" "F ) _. it:-' [ T ,) -

"_i (qT1 (il-2"r, ')' II'l'L'_'_ (:,-2¢ , iI "1 r.,)- _ , 2j' ...

._,-2 1
+ '* "_'i (:;- ' :'Y' r2) = o,

W]I,:I'O

'q ,,-1 q-] c." (]:':_-r) +h° i = _'ik ._1 (iC:" ,r.,) - :_., ... _kt

I -D
dik ('_ _1 (H"- 't"-,)._ _ ",r..f-, ][-1 ,'r.,),, -

2) ]- ';ik (q Y4 (t," .Ta), _i"1 -r _'_1 (Ic'a -ra).

',J}!oll_:1_e v:{.!_.I:S _, '_O:]:_CSz_ t:e .",,?I'oO;'(.[el'_ ',It]I_VO
• k -

oI/2 i (A _ t) o (-q_')- iqt I¢_ -

The c:,_es _.l_:en_= O, 1,2, .',.t.eoi.",,r'_,:ti(::,.1J.ntom_.st. L'he

f,;nctions _0i ]lave an order }I an_ w,.-n the conditions (:L) nr,: s:tti_;fi,.:d

they have zero order in resDech of ]{.

i..

t.

Accordin!; to Poincre's uethod of :]_all p:_rm,,,ter (11_j t._e get

xi " Yi' x' - y' _ , 0 (I{"I)i i
(2,.24)

'.?hevaria,les Yi are such th:,t require x i t- satisfy the oqu..tions

"_*(_?r+Yr,o)_"+ksik(o ÷ _ ,o)_.

o.,-_ In or ](_ ÷ _.,,z_.,o)-n_ (_. ,o,o) . (3.25)
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: " i4P, f e,Juation (3.P _) _._ zero
aik' gfk and at _ = 2 the r_.Fh_ h',n8 _ o .

to th_ ordmr of _{, th_vmfor,, i: th_ linm ._.ith mquatinn (_.2K_)

L

O ,,i!Oorder of vk :_ _' i:: .__u&l to the or:h.r _C y,. :_.nd i.e. i{-I

Therefore, '_s a re:_.!t of (3.J_,), (':,.21) and (3.::4) ve ]_ v,a

[qi " ';i = o (x'l). (:_,a6)

For::lul._ (3.26) ,,rovi,b._c the h-_is for tI_e applied t:_enr>, of

the tD'roscope s.

Re:v,r]:s: Th,- conv,,r:jonee of rmm in (:_ccordin- t,)) the Poincr,,,

I._et,_o,_vequi:'es t!_'.t the variables qil " '7i' _iI " _i (in _v_-a,?ra]_h I)

a_.d x,..- Yi' x' i - Yi' (iu .)"ragrn_,h. 2) are hounded, fhereforo, the,

supposed (_ntJci_:,ted) asyi:!ptotic esti_,'tions DPeserve t}u._ir value. _

infinite ti_e-intervK_._ only if t:,,cabove rcferped v' Pi'bles are

boun,,ied. G__n,_,r_3.J.vin case of m_ un:_t'_.:,le_C,!ro_,copic _2,':;tm'ithe

," _I 3esti_tions obtained hold _3nod ._t n_:r tiiae if til_ vazl _le li,_ in n

sufficiently l'_r:.:obut sound,'C re_i._n. _h,_' P_ i,,<:_;at. a.l:;o v,_:i,:

in what follows.

Let _.w; find the va.ues of te positJ,_n:_l velociti,'s. ,]b"

settinc up /_= U"2 and ta_ing into ;_ccm,nt tI,:_t qi[1 }vvo. t':_,_order

of H, w_ find

,-' I = 0 - _= O (H'I).Ixi" zi' "'i- z_. (H'2)' {_i £i (3.27)



]. 1

_Jil (qo :;7 , (o'_ T + ' ") _"" + "tile ']_" * _;7 ' t) _.,, =

= -I2i ('IY1 + ""(' " 1 ÷ _.,' , , [;) +

,-1 , ,;)_ o _'i ": c,,,) (:.,::)
+J_i (''" }'1' " r, 7 1' '_i]: ('[; ÷ ::; _"' ']:] ' °

If Lhe c ,n_;itiou,'3 (a) "_z-, ;:ati.; _4,,,', l:':..,_ c,'i h" ve _ '," :;,-z',_

ozu:r rec_._ct o " ' a_z,_ t'u_ t,_:'m c,-nt_iniI_.:: q"[1.. ' "

'./h,_-n = O, ti,e rijht h:_'!_, :_Ld¢ o" (_.,.'") v',. _ -_.... .

I_ fo:!lo'm £roi.i e.,_ tio_-:_ (', ...... ''

h:.w' [,i,e or,i:-,z • of i[ "1 :u_d_ thercfm-c_ i._ ,_e,:o_'r;.._,'e with (5.f.,),

(_.21) "nd (_.;!7)the ;o;;itio,,:,l vclo_.iti_s {qi- zlJ = 0 (]_-I).

Lot u_; di.ucuns ",s _)_.(,::::_J.,.::', ."ro:;c,>-_,-:'./ith :, v.'r._: !e

r_ass and whose equ:tio:_ of _otions nre [;ive:.:in secti,,_ % 1.

_A_
C dt (_+_c°sU) = K

,,.,

L

The moments of iz_..:_'ti.aA an,T d, _2eudulu_ mor_;ent z.q;land

reaction ;._ouent K :'.rehnown functions of tiue. Thercfo:':_, :.m .-:_.t

+ cOS_= H + h, h = "_ dt,
0

t

#
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In co:2Go:_'.:1,',,:'_i_h t_: a u)li,:d t}L,,ory of t}_e i:yrn_]con,:s ',.,e

:_et

c (i_+ h)_: ,_:!,0- o, 0_- 0o, & = (_i _I_ ,It + _ (3.29)
o

..--I

rotr,.tln" ,;yro,_cope of " "r:,pi':rble:_r,_r;dcv:'.,t,_s fro,,_ th,' w_.rtic:'i

position t'.',rou':,.:_n ,_n:]e _o' t_cn it _;ill pro_:uce
0ill vr,riablcs :,n,]

o: ¢ill'ttion_ ,.ho:_e :_::_,_li ';',ide i_} o$ t'._eorder of h_-I n;td freque:ic{es

of the ordez' of :{ about tn. motion (3._-..)

3. llotion :_f a Gyroscol_ic _C_,f_t.em_-l_ce._d.,0,i f, i_obile

Foun dat ion.

As in p::)'agra_h 2, we wihl. first study the _,otloa O2 :' str,_le

systemo In order to do this wc will stud:,_ the linearized equ",tions.

Res_rictin,_ to the terms of the first order of sm,_l hess for

qi ned _i in equntions (3.5) we obtain the equations

"_ik "_k ÷ (bik + Hg£k) _k + (Cik + Hdik) qk = f£ + _[Fi" (3.30)

J
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fro_.1. '2h," eoe:'f_cir, nts in e,:u',ti,_ns (:).30) :,re explicit fun,.:ti,mr,

of ti_lo and do not dcrend upon ._Lo p:_:r,%rrTeterl{.

._qu tions (3.7) :_,ter the line:_rizntion :.:;:_,u',eth,, forri

V _ v'

(b_k + II::ik) _k + (Cik _ 1!dik) gk = fi + "qFi"

}{ere the sj.gn_V>> i2.t]icat_.,'ithat th,: givel, coefficientr

_}iffer fr_1:_ thor:.e r_:corded pr,vio_i_l,l.

1) In th:: re_i ._:;yroscopic ']y;_tc' s t},,' coef"ici.lLtu dik :'.n: l

F. l;_n.yh:Lve .n coHnoneut of the a_,,';ulrr ve!oc_ t-r o" r_t,_t[on o'" t]_e

er'.rth which will be a nuffi_lent.l.y sHa_:l q_._,_,tity, the coef;ici<HltC

Ci|< r,]ay have t:.component of _ho ne,';,b;lu_}2:.:el,eat :.th;c'.:in c,:_'tnin

::yroscopic s:,,:_telnswill be close to I{. i'herefore, in -un2/ concrete s

systeu we should studj its sDcci:,.], features®

2) If the generalized, orOin:-,ry nnd reaction forces n_.e not

expressed ao explicit f,_nctions of til,,,e,t],en the equ_tJ.nns (_-_.3__)

and (3._1) nre obt,:ined only if it iu po,_si;,].e to find _v = _ (_*i'

qi' t) fro_ the Ln:-;r:_.n :e_s equ:'tion of secon, tsar, _. for t}.e c.tc ic

¢oo_'dinr_tes,

L

As before, assui_in:7 ti:nt the deter:.iination of th_ ,,:mtrix of

11the gyroscopic terr:_s gik in diffe," nt frou zero, we co_,siO,er the

solution of equations (3.31) vith _rb._tr r:, initial c=,nditions go =

o

_i" The v',riabl s gl h_ve the sa_e order ".s the initial conditi.-,,:s,

i e., zero in respect: of H. The e_'der o -° qi is not hiKher than -,_



e-u' tior, c

(bi]: + L_:i]:) _:kl + ('i!: ÷ !!dik) :kl z i

o o
',lit: it_iti_! C_.:Iditio_C qkl = qk"

_0 .r.. - = '_'iI- <'. t

(;:.31) :,n_t (5.3?)_n,_ ;,_t

eq_l r ti,,nS

i
l

l

!.......

(!['1 bik + dik ) _k ÷ (_i-1 "ih + dik) Xk =

I{'I I "_ v - vil= (bik " bik) _k + (Cik - ";ik) Zk ÷ f'z - f '

fro:i t ,is it is e:t:_y to see th' t

{rkl " " qil " /_il: o (H'I). (5._3)"i,
J

(I)
Let qi c}-:_r:cterize the uotion of the ".;;/l'oscu[,ic_yrtcm

(3.30) t;ith initi,_l eon,:iticns

(1)o o [ (0) + HZi k (0)_ _(1)o r _ oqk = qk' bik . k + hCi_ (o) + L'dik (O) qk =

-- _. (o) + _:F. (0). (3.3_)

(1)
In view of (3.30), (3.32) and (3.34), Yi = qi - qil

re;_r_sents the p._rticul_r solution _tith the zero initial con, itions

of the systeu of equations

alkYk ÷ (bik ÷ Hgik) _k ÷ (Cik + Hdi]-) Yk _ " a_kqk1" (3.35)



t'; '

It follows from (3.35) and (_.15) 1"h_t _be variables 2k and

_k have the order, of On which is the |_imum of _he _11ues of O'

and H"1 ,

The solution _f equations (3,_3) with arbitrary initial

conditions q_ q_ is qi " _ 1) + qi

of the homogeneous equations of th_ system (3,_0) and sa%isfies

the initial conditions

_2) 0 _2) o o _1) oq • O, "_ qi "

Bet up _2 " Ht and sMmbollz_nE" the derivatives in respect

of T 2, by the sign "11" we 8st

aikq_ 2)" + (H'lbik + qik) q(k2)' + H"2 (Cik + Hdik) q(k2)- O.

Consider a solution satisfying the initial conditions (_._6)

of the system of equations:

a -" ÷ (H'1_ik + glk) q_ - O.Ik_k2
(3.Y7)

The variables _2 possess the _.me order as the initial

conditions i,e, H"1. Sk , _2) . qk2. are obtained as particular

solutions with the zero initial conditions of the equations

a s" + (K'lbik + glk ) s_ + H'2(Cik ¢ Hdlk) mk -Ik k

• " H'2 (_Ik ÷ Hdlk) qu" (3.38)



Solve the equak_ne (3.37) in respect of _2 and inteBrate

then with respect "_2" _is reveals that qk.2 has order h_'1. In

order to fin_. a p=rticu_a_, solutise of e¢_uations (3°38) with the

z¢¢o initia_ conditi.one it is n¢,_e_aary to integrate w_th respect

to "_2 k_eping the ra_.ge from zero to Hr. Thorefore t it follows

that zki. 0 (K'I).

Consequently, we _et

qi " gi + 0", _t = _i + q_2) ÷ 0",

which serve as tae foundation of applied theory of gyroscopes°

Zt sty be emphasised that =k possesses zero erder in respect of H

and ia the rresent case _2) cannot be replaced b 7 the velocities

_i2" U_like the ease of the gyroscopic syste_ placed on a fixed

foundationl _I1 c&nnot have the order of H'I.

Let _s now co_.sider _he case when the gyroscopic _7te= has

_'_ite _evietiou6 and th_ generalized forces are of the orde_ of H

(for _xample p_dulu_ Bo_ent)° _uppose _i which obtained by

dif_e_entia¢£nK equatio_s (_._?) have the order in respect of H.

TheWe fin_ a sol,u_ion of equations (3._) in the form of (3.21).

variab£es q_ amt_afy th_ equations

In this case_ qil oan._t _s taken &e _unctio_ of the argument

_1 = _'qte To find X_ _e _ oqua_._ons



|:

!
i

!

i;

Imm

ai_ (q _1 ÷ x_,

+ _"2_:LCa'. '(1 ÷ x_-,

1{"1 _Z) x:' ÷ (q ÷ x li "1 _2)_c I;ik _rl }., x,_ ÷

1 + I{='). , II"1 "Y2) -_ (q _'1' _ _'1'H'1"C2 ) +

CH'lv (_ , x _ ,'_) • O,

where

_" "ik Cq _1 + x _, H'I_ 2) _kl ÷ K'_ rLsik (q _ + x_ ,_'1_. 2) -

"qik (q _1' s'l"'r2 ) tkl ÷ H'I _8io (q _1 ÷ x :, H'I_L"2; -_io(q gl,H'_E_2 )

when _k has _he _ero order, we hate

0 i ( _,_, t -.<0", =

Thll will explain the interesting cases of the _r_scoplo

8ya_ema.

Be functions _ depend upon bot_ H"1 and _and vanish with

them. In _o¢_rdance with the me_hod of small para_ete? due to

Poinare we hate

where 0 _ • _ K'q_ .

The v&_ables yLare _iven by the equations

•_(q _. __. e"__r_) _ , s_k(q _. _, _'_-_) _.

+_'_ (q _ * _ ' _ _ ÷ _ ' _'_ _) " _ (_ __' _ _, _'_ "_z o.



.. _%-

Yrom equation_ (_.3) it will be seen that y£ and y_ have the

order of the initial condit_ons 1.so _'10 (3.8) and (_.40) show

that

Formula (3._2) will substantiate the equations of applied

theory of the _yroecopeo on mobile formation.

4. Effects of Change on the Mane of Yarn on the

Vibration of the S_indle.

The =ode_n fast spindles ca:; be regarded as the gyros,.poe

_2, 31, 41, 4_J , The two supports of the stem of theand spindle

are installed in the hub which hangs from the cavity by elastic bends.

As .the number _f revolutions increase the st_:_ remains _isht for _ome

time, therefore, we will carry out the investigations, b_th when the

stem is tight and elastic.

1. Fundamental dynamical characteristics of the cylende_ioal

and .canonical yarns. We will first establish the dependence of the

fundamental dynamical characteristics of the cylen_erical yarn on

time. To _ix the ideas, we will consider the winding of the thread.

Let - be the density of the thread,

- mane per unit length of the thread,

_= angular velocity of the rotation of stem s

I, J.
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CO1 -

6.,D ! .

P -

T --

m

,_.n_:u!"r rrbital drivin.r_ velocity,

;'.:t_;ulvrvelocity of vindin::,

ra(;ius of yarn,

tiue tpken in windin:; one strature,

mass of the spindle.

.4e will u-_e the index to denote the zero v_lues of the v: riables

at the time when we be:lie to t_,ke account of the vibrntions and which

we will suppose to be zero. 4c thus i_et

g= __ , co' = _o- o01, /5 = 0" _ _,

d

= _o +--'T t

It follows theft

m= m° ÷ _:o' Pot ÷ ? " -2.-----"

The last ter_: has the ord,r of d3 and this can be neglected.

Ta::_nS into =_ccount the szall D_rar_eter _= _-_' and denoting

mt = pO t we Get

+ T_tm = m ° _ t. (4.1)

_he derivative in respect of time of the moment of inertia

of the spindle about its ovn axis is given by

d t)3 _-_,A= (po +---_

Therefore, with the points before the term d2

A -- A ° + _A't, A' -- p3o. (4.2)

and ,_iso the derivative in respect of time of the r:soz.nentof the

inertia :,bout the tr_nverse axis is given by



m; _ m

where _= L + f ( t • t' ) is the projection of the radius vector

of the surface point of the yarn on its axis, L is the d_etance of

a fixed point from the center of the yarn_ f is periodic function

_h the anXular ._:requenoy _T/T oscillating about zero, a_plitude of

the oscillation of f is equal to half the length of the yarn (1/_)!

t e tn determined from the condition

_o. L ÷ f (t');

-_ = _ cos (0_ t +_) represents the pro_ection of the radius vector

of the surface point of the yarn on the second transverse axis; is

the starting phase from here; we thus find

• ' _o_, - )"

Nesleoting the second and the fifth terms in the brackets and

ayerasin 8 (approximating) the second integral, we get

B - Bo +/_Btte B' - (o o ( L2 :_

In case of cannorieal yarn

_= {_o" _2H r''t £ (t ÷ t') ++t,

we hate

f:
L

where r 2 is lower and r 1 is upper radii of the yarn at the starting

time (be_lnninK); _on+ (r 4 + r2). Repeating the earlier pr_

_rT for the -_.a_9_cal yar_,and takins into account that _'7_-_r - ,
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2. Vibration of the rigid atom of the apindlo with a variable

yarn. If the tension (pul!) of the thread and the _eaotion force

cauNd by the addition of mace are not taken into accounte then the

equations of the oaoillation of the rigid atom are analogoue to the

equationa of the empty atom or when the atom is full of 7am _1)0

Cso ÷ys,t) y. CAo , _,,t_'-, + ( _o +_ v,t) y.

= - (mo + _.'t)_Iph coa_,

(so ./_ u,t) '_ - CAo ./_ A,t)_. ( vo -/_ v,t) a.

- - (mo +_met) _21ph ain_:.

Let (x, y, s) be a fixed aystom whoee origin ooincidee_ with a

fixed point of the itol_ and toe vertical axis ia regarded as x-exam.

y and a ooordinatoa are below the ohan_n8 elaatio support vhose

distanoo from the fixed point is 11 h donotea the projection of the

radius vector of the oonter of Kravity of the spindle on ira own

IX£II p - ocotntricityo For oonvon_once, ve suppoae that the ohange

of mama does not affect the o_anSo i_ the valuol of 1 and p. This

does not make aubetanti;1 ohanpl in the fl_._l reiulto In equations

(_._)

_o " el2 " Iol_' vo ,, . n'lJh,
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where C is a constant.

assume Bo_Ao.

In the case of modern spindles we can

Pull or the tension of the thread will be characterized as a

periodic function with period 2T. The point of application of this

force turns around the x-axis with the angular velocity _ i The

moments of the forces of the tension about y or s axis will change

sign as it is wound in one or the other direction.

moaents will be of the fore

ct. t.,) ÷/t,, ct. sin ),
(_.6)l

L" (t ÷ t I') .i/_.tYI (t ÷ tlI_ COS (_It ÷_ )t

where F and F I are odd periodic functions of the anEular frequency

--_ , Time t" and phase are found from the initial conditions,

Reaction force according to Mesherkyls formula is equal to

Therefore t these

where _ is the velocity of the particles of the thread before (till)

they Join the yarn; T is peripheral velocity of the yarn; _ie angle

of the windt_8 (si_l change pe_iodically in the interval of tile T

sign is plus and then in the nex_ interval of tile T silnbloome!

s

minus). The iolents of reaction force abo4t y and z axes are

respectively equal %o

d
I

i



- 4()1-

The moments of the reaction force have a periodic character

like the moments of the force of tensions Therefore, the momenta

of the two types of the forces are set out in the formula (4.6).

The odd periodic functions F and F' may be replaced by a

trigonometric series without sacrificing the accuracy. To fix the

ideast we replace them by the first hormonica. Then in place of

(_,6) we have

(a +._,bt) sin -y ( t + t") Sin (c.;tt +_ )v

(a +t_bt) sin (t + t") cos (_'t +_).

After making the transformation 9 the moment about y axis is

--g- (a +/,,bt) cos -,_') t + _ - -

r- cos (_o' + T )

Moment about z - axis is

(_.?)

I_ (a +_,bt) sin ( .c_,,)t +_ - +
J

+ sin (_t + _ ) t + (#+ _ t 'e ,

(_.8)

Let us add moment (_.?) to the first equation of the 87stem

(_.5) and the moment (4.8) to the second equation.

The intrinsic vibrations of the spindle die out on account of

damping which is no_ taken int_ consideration while _ritins out the

equations (_._)e The forced oscillations of the spindle _ ,n 7 + is

are detez_Ined bya particular solution of-the system (_.P)o



Ammumlng _- y + iz, we &et

°,

(s° +yB,t)¢- i_c, o ÷ _A,t)_+ ( Yo

. . (m0 + _' m,t) c_21phe i'_'t (4.9)

The dynamical characteristics of the mplndle can be

represented as polynomials of the degrees ._ ' B/_" , and

therefore, the motion of the stem is _uticlpated in the form

l

" o + '_'_;1-, + '_ c_2 + "'" (_.10)

Since the equations (4._) are worked out with accuracy upto

_,, and this puts a restriction on the solution (4.10).
4

{f

_o is a particular solution of the equation

This gives

alei _t mo _lph•o " al " _ .... 2
- Ao_,_ . V o_,,Ig,0

• L' i"

The first term, obtained as particular solution of equation

($.11) when its right side is sero, is equal to zero° Further we have

2, _,_ al_tei_'t"

"(4.12)

This yields C 2 (a2t + la3) ei'utm- , where

t

l
!
I
t

(
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a2 = ' " ( 2 .... 0 aj = _o "(Bo - Ao) - vc

aubsequent approximation may be obtained in the sane way if

we put the exact formulae of A and B in equation (4,9), By

tranoforming to the variables y and z _o get

006 o:t -/.L, a 3 sin _to

sin_ t +.L_a 3 cos_. t,
/

The forced, oscillations due to the tenaion and _eaction force

will be found in the sane wayo By proceeding £ro_ (;,7) - (_,qO) for

the sere approximation in this oaas we have

whero

whore

/re| (4,,'1_) o we le_;,

o a12 =



_ have _ 1 " Ot and to f_n4 _ we ha,_ the equatione

Bo_2 - i_Ao_:._ ÷ (B,_._ ÷ A,_._n.;-_,) ,,_ t .xp -_ x

whero

_b.£s ¥iulda

(k - It 2).

)

_r£t£n_ in 7 and s _ar_ablos, for the foroed oroillatLona due

to the tens£on and the reaot_on force we _et

k-1

2
k=1

When the mot£on £s restr£cted £n the ne£shborhood of the ohosen

v

_nttial moment, the or£_ioal angular velocit£os _ of hard stem are

_iven by the mlation

-_o1,_ - = o, _ +_o&_k" Vo'O"

Zn the oo_rse ot mo_ion in tho noishborhood of another momonte

the nomont_ of £nort£a and n_ss. of the mp£nd_o oor_ospond£n|lj ohan_o.

!
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Therefore, the change in mass of the yarn does _ot substantially

influence the first critical velocities t_ 1 and _"2" A smearing of

the critical velocities takes place as a result of change of masse

' the spindle has two crltloal velocities ofBince-_q_l 2 :_L_ e

hard stem which satisfy the following inequalities,

v . BLc ,2

2 _ max A_'

t

i

It may be observed that the amplitudes of the oscillations

L, a2t, /L, a2kt, and/_as, /_a3k oaumed b7 the process of change of

mass vhen_-*-.-_c_ increase faster than the corresponding amplitudes

&l or alk because a square and cube of one of the expressions (B o - Ao)

a3k. Xn order to find the dynamical characteristics, for example,
V

reactions of the supports under the angular velocities close to _G ,

we will study the oscillations produced as a result of the process of

change of mass,

In the case of resonance when (Bo - £o) _ 2 . _o • O, the

particular solution of the equations (_.11) has the following form,

• mo_iPh

_o • ibq tei_t' bq - 22 ° . As,

fo_

The particular solution of equations (_.q2) is obtained in the

2 " (b2t) + ib_ _2 + b_) • i_t,

q



_,_,__

in which

-m'_lph + (25o - AOlb1
• (Bo . A o _?" . vo b

ba, 1, ,o)

2Bob

bi=-_.

i,

I

...... A .

In aaoe of resonance in terms of y and s we get

y • - (blt +., b3t2) sin _ t + /L_(b2t3 + b_t) cos_to
r

z • (blt +.. _,b3t2) cosec t +_'(b2t_ + b 4 ) sin_'to

Consequently, under resonance the amplitude of the terns increase

with t 2 and t 3. The amplitude of the ordinary oscillations la

proportional to time.

In modern spindles c_2 in ten times more than t_ 1 and with further
%/

increase in the operating velocity of the stem _'2 _vLll come in the

_anee of the operating velo_itiem. Angalogoualy, investigation= about

resonance are carried out when Bd_: + Ao_c-% k - _'o • Oo The resonance

oscillations rill be described by equations (g.'lS) in which _: :J,.s ohm.=god

_k

for _-Z k and t + ._k replace t.

2, Oscillations of the elastic stem of the ap£_dlos with a

variable yarn. At a certain angular velooityt the =toms of the

mpindle germ riKido We will atud_ the vibration= of the flexible stem

owing to the chants of nasa of the 7am.

Denarius bF Uq (zt t) and Vq (z_ t) the ea_Kin= in the directions

of _ and s axes0 vo find that-the complex =aKKin8 on the q-th secto_ of
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the at.s, _q (x, t) • Uq (x, t) + iVq (x, c), will matisfr the

differential _uat*on £_1, 42_

' : ._X _ + kq ' - t2 ' • O, (4.16)

i
in which kq a -_q . Iq and _Zq - are the mass and per unit

len6th and hardness on the _UTVe (bend) of q-th sector of the stem.

_he stem is divided into parts according to

suppose the sten ts divided into kq parts. Then the solution of

equations (_°16) lust IHati6fy _ n boundary complex conditions _1, 4_o

P

f

l_roc_edLnG fron (_.1) - (4_), the boundary conditions _ay be

vritten in the furm

/__., (po _'r
o ._v.,._ _) qk ÷ /_P'qk_ _t)

0 _2

(, (q
"_x Y _t T x=lq O_V÷-/._ _" /0.

)

0 -- )_=; 2

_X _t _ XlO (Rqk +/U (k I 1, 2, _, _; q a 1, 2, °,n).

(_.I?)

pO'_( _, 0
qk" Pq _r_ _;r, q_;( lqk: Reqk are oonstant_

lq - lenKth of q-th pt_t8 of stem.

_e non-hoJopn_tT_,'of the ©ondi_lons (_.17) is duo to s_atio

and d)_liO diabalanoe. If we take into no.oust the tension of the

thread and the tea.ties foroe, then on the right side .Of equations

(_.17) ve Wll_ add _he tsz_lI
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Since the intrineic oacillations of the flexible etem eubside,

we _ll aonsider only the forced oecillatione. These coneiet of the

oscillations ariein8 ou_ of the disbalan,e on the one hand and thoBe

produced by the tension and the reaction force, on the other hand.

Let u8 coneider the forced oscillatione due to disbalance. The forced

oscillatione due to tensio_ and reaction force will be dealt with in

the same mannez..

The forced oscillations due to disbalance are determined by

the equation (_.16) and the condition (4o17). Suppose

1 a 2 a3 _--_J_q " (aqe + /_ qllt + _.qll ) Ks ('-_¢_ kqx) • i_t, (4.18)

in which alqm' a2qB' a_s are real constants, K s (y) - represent the

Carilova ¢unition_ latisfying the equation K_)(y) - K s (y) t O.

I.
i

Put the expression fox• . in (_.17)

"_ 3 (ic_)%'+

+, N2t C''_)(;-1. a2q.l, "l K('vl ) ( -/'T_-kq+'l"l q} ÷

O_;T_2

. i'_k.,._{x,_t. (_. _9)
"Ii

S

.... ,,_L_



+

- _{}9-

Assume _,- O0 then tho constants will be found from a systnm

containing 4n equations

a aq Ba a I 1 o (k - I 2, }, 4; q - 1+ 25
m,1 {AqL q +1,o + qk qo" " Rqk T

As P°'+ {_'J}{'_ mq.,.+,lq),qk'o_./÷7_ } qk {i{_)

O_ _ 2 ,.._.+__

Bqk = O_V+ T-<}
0_7_2

I do not exist vhe_ the detormin_nt £ormed trod t
Tie constants aqe

the coefficients of these constants is zero. The values of_which

satisfy the equation_= 0 will _e regarded as critical of the second

a 1
and hisher order for the tile t. By Cramer0s rule, qs are obtained

as £raotiona whose denominator is _. Equating the coefficients of l_t

on both the sides o£ equation {4.19) we ge_ the system

_*_ s a2 + Bs 2
/_-_(aqk q+l,m qX aqa) "

qs o.<+++'+-+/. ,,_c.
) (

kq+,llQ) -

qs

)
(o) (+.+q)

s

0+_

The 4n constants a 2 will be detemined fro, the ;n equations
qe

(_.21). The dete_inant of the system in asain_, Therefom, the

constants a 2 _111 be of the order of _-2 for %he angular velocities
qs

approaching K .
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Equating free terms of the order of on both sides of equation

(4.19), ve obtain the system

• qk q+q, s -qk qs" " _-_ | q+1, •

L
2

_ _ _ ) _ "L _ kq÷ 1 lq) - aqs 0 -< V+ _ _

x

o ,,__2

zc ) co)1.
.A

(,_.221

T*

i

!
i
1
!.
!
I

#
I

Therefore, for the angular velooitge8 which are close to the

critical velooitT_l the constants &_ have the order of _-3
qe "

Uiinl (4.18) in equation (%.16) we pt

" (aq8 (_ qe + 21 l s - O.

When the anKular velocities are larte, the tern 2ic_ "1 a 2
qs compared

with 2 Is neglIKibly emtll. It the anKular velooltles approach Kc_,
aqst

then the term 2i_ _'1 a 2qn compared with a t i8 skein negligibly small,

Consequently we may think that the expression (4.18) will

satisfy the equation (4o16) and the boundary conditions (4057) upto

/_. The effect of the chan_ of ntis in the yarn and the tension of

the thread on the vibration of the spindle with an elastic stem in

similar to that on the spindle with a riKid stem.
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CHAPTSR - Vli

Some aspects of the optimal motion of a body of a variable

ma__s i.n tile central field.

The investigation of the motion of a body of a variable

mass has an im1_ortant application. The optimal trajectories of

the motion of a body in this and other contexts have paramount

significana_. However, the theory of the optimal trajectories

in the central field which was first discussed by V. H_m_n

(112-j} and b._:. Ol_hetzimn:_i_ (76) and many other scientists is

beyond the scope of t_is book, No will confine ourselves to

studyinc, the effect of the carioliso force on the optimal direction

and the use of the sectors of tr_jectory with the changing

reaction acceleration.

It must be mentioned that these questions can be resolved

with reference to a model probleof the optimal transition of a

body on circular trajectory. Therefore, the proposed (expected)

solution should not be regarded as final aud complete. The obtained

results have a theoretical interest in th# analytical mechanism of

a variable mass.

In section _ I we had pointed out the conditions in which

Meshakyls equation can be use_ to describe the motion of the center

of the mass of a body I i.e., the conditions in which it is possible
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to study the per second consumption (disch+_rge) of a relative m

momentum and a relative kinetic molrlent toi_ether with the p:,incipal

vector and the principal moment of reaction forces.

The results of this investigation will be applicable to

the study of any kind of the motion of a body _f a variable mass.

The inclusion of this study in t]_e present chapter underlin_'s the

significane of the r,]otlon of a body in the central field ks a

fundamental pr,_blem of O_e dyna:.,ics of a body of a w_riable mass.

In this connecti_.no it _ important to obtain the differential

equ,'_ticns of thu t:_otion in a simple and convenient fcrm.

6ection ,__2 and 3 deal with coplanar and non-coplanar

problems of the optimal mot lea of a body, if the initial position

is fixed, particul'_rly in any of the points of the circular

trajectory around the attracting center.

_Q Replace,:,entof the Principal Vector and the Principal

Moment ' of the Reaction Force.s b_ the Per Secnnd

Co nsumption_(Discharge).of the Relative Momentum and

the Relative Kineti.c Moment.

I. General formulae for the principal ve&tor and the principal

moment of reaction forces acting on a body of a variable mass. As

proved in Chapter - V, if we take into account the internal motion

of particles in a body, then the principal vector and the principal

moment of reaction force can be expressed as

f
i
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r 0'_r r
n= 11 " ---a_-- - _2 +_"

(1.1)

(1.2)

r
_ and _I " denote the per secona inwPrd rel_tive momentum and

relative kim, tic mom,_nt throu:;h th,, _urface of the reactive body;

_ a_id _r2 " denote the per second o_twnl, d relative momentum and

rel_tive kinetic moment through the same surface. _r and Ir .

denote the relative m_mentum and kinetic moment of the '_rticles

present in the body. Formulea (1.1) _nd (1.2) involve tl_r_r

derivatives also.

The principal vector and the principal moment of carioliso

forces, as establi_;h_,d in chapter V, are given by

ne (I.3)

YI [r dl d'I Ien = - _ x " --_'-+ d---T-" 2. ( 1.4)

e _te eIn (1.3) and (1.4), _i' and- denote the per secondY2

inward and outward transport mon_entum and tl_e transport kinetic

moment through the surface of the body. _ si the an:_ul_r velocity

of the rotation of body in respect of a fixed space.

The formulae (1.2) and (1.4) are valid when the mo:,_ents

are calculated about any point of the rigid system connected with

the body. When it is so, the momenta _I and _ are computed about

a system of axes moving translationally with the only point which

is regarded as the pole.

JL
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2. Valuations of the principal vector and the principal

moment of reaction forces fT_. As an example we will consider

the motion produced by free liquid. But the forJ,lulae (1.1) -

(1.4) enable us to caDry out simil_r investicntions and obtain

analogous results fo_' any type of the fuel (motor). Since the

x" e
motor operates without the suction uf the, air, we have 91 = 91 --

O, -r -e11 = _I = O. Denoting the per second discharge of the gas by

i

/_and the relative (average) velocity of the discharge by _r' we

have

_r2 (1.5)

znkln_, into co,_.,_ide_tiou th_ pre_:_ul.., of _xhausted .oarticles

of g:_s result_ in n ch_u_Ee of u r i_, t!_i:_ formuln for an effective

exhaust velocity, that i_ e_u:_l to:

u = Ur + PSc_'_ • (1.6)

Here p - is the difference between the near pressure of the

gases in the output cross section (outlet) and the pressure of the

surrounding medium. S - is the area of the cross nection of the
c

outlet.

The per second consumption (discharge) of the relative

kinetic moment is written as

r

Wher. _ - is the radius vector of the middle point of the

outlet cross section in respect of the pole; _ - is the basis v_ctor

of the tonEitudinal axis of the body directed from the outlet

cross section to the place of the fuel.
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We divide the space inside the body in the direction of

ti_e lor_6itudinal axis which is occupied by the _ases into the

parts of the length d_= vrdt, where v r - is the averace relative

vel_city of the _as in the cross section. The mass of the _aa in

a subdivision is equal to #(t +_)d_. '_ denotes the ti_.e taken

by the gas to move from the subdivision to the outlet cross ,_ection

of the nozzle. Denote by the derivative of the per sec,,nd

consumption of the mass ixl respect of time and lot _ denote the

length of the space occupied by the _:as:_. Then the relative momentum

and relative kinetic moment are recorded as

u
r

(1.7)

=- xI.o( x[).
i C U r -.

(1.8)

o

In this case, the expression of th,: prLnc.Lp-_l vector of the

]:,.

%

carioliso forces (1.3) is tran_formod into

2

r

-e
where vT - is the velocity of that point of the body from which

-e
the fuel drops, and v c - io the velocity of the _:,iddle point of the

outlet cross section.

Accordin_ to _:uier'n formula for the velocity, wc h:_ve

r

,

t

(1.9)
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Formula (1.4) assumes the form

-)= _3x Ir " ", x (Lx") - _,," " ._ O ('C T
' U r

where _T - is the radius vector of tile middle point from which the

fuel drops with reference to the pole. Since T ; "_ +t_[, then' ;"C

I_=-Z" x [r +..f c x (j x I) + i x (t_"x,%) +
U

(1.1o)

From (1.5), (1.7) and (1.9) we find that the principal vector

of the reaction forces (1.1) is equivalent to

2 3
,, _ . ,,@ ....mm.nr.mm) @r /I + 2 ; _, x _ +o (_',,------, , u

U r• ,' r

(1.11)

Consider the axes x, y, z, firmly connected with the body.

Let the origin of the system be at the pole, and let the x axis along

• the longitudinal axis of the body and y and z be the arbitray axes

and directed from the output cross section towards the input of fuel,

y and z be the arbitary axes.

Planning for a vector equatinn (1.11) we obtain:

r I" J_' _ ,. :2 L,

RX = Q2 L1 + "---",- • -- + 0 (--7-3",:_ _ , ,.--'-'r'-.. 2 '..X e Ur u_
u rr

• _ + o ( _c _ ) , (1.12)Ry % Ur "Z-' •
u r • ,, u r }
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R z y Ur _i' ur . ,, ur

For steady flow of raas, we have

-- R = 2Q t_' ' Rz y uRx y z ur r

Formula (1.12) shows that the substitution of the principal

vector of reaction forces I% rate of consumption _ results in

discording ter,_is of the order of O (Q_. _".-q---)•
r

Ny virtue of (1.6), (1,8) and (1.10), tlle principal moment

of reaction forces (1.2) is equivalent to

, 2 3
m t ,

+ I,,,2_[x (_ x ![) + 0 (,,,_ ------II I t --'='-') "
! , . U

r r

(1.14)

i

i

L " _m

Suppose y axis is taken along the vector _ x I. PrnJ,_cting

the vector equation (1.14), we get

I_3

Mx = 0 (l_. ur , _,----- ),. U r

;_ p'|

/_ __F_) r , (2hx,. y 2hy_' " y)r (1 + _ + "-----" - +_ _ +
Mr " 12 __ u r Q2 u r x

I 3 • ."3
÷ O (_'f_ ------ _' -----'--),

• %1r t up

I'3

Mz • Q2r __ur (2hx¢'z " 2hz _'x +'/_" z ) + 0 (.,.'.'------Ur

f

,/'--q'--).

r

(1.15)
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If the pole is taken on longitudinal plane of the body and

the body rotates about the axis perpendicular to the plane, then

if 3 /'3

Mx - 0 ():" -q---'r/_ -_--r)' Hz

., ")3

3 ...__r)= o (_,_.---- ,j,
, U r

,(_ :?

r (1 ' )My - 12 ÷ ......
{_ ' U r .

• /'3 ,. />3

r_.__ (2hx + ._.,),_+ 0 (,,_' Ur+ Q2 ur ; . --_r;,/' -----)"

(I._6)

Ia case of steady flow we get:

r r {@

My = 12 + Q2 u-_- (2hx
4)cc M = M _ O. (1.17)

÷F ' X Z

Formulae (1.15) - (1.17) show that the substitution of the

principal moment of reaction forces _ by the moment of per second

consumption (discharge), results in discarding terms oT the order

(Q_ _of O Jk-- ).
U
r

In modern che,ical engines (engines using chemicals) u r is

of the order of 2000 - 4000 meters per second. P may also be several
q

meters. Therefore, cop possesses the order, 0.001. Consequently,

U r

the replacement of the primcipal vector and the principal moment of

reaction forces by per secon_ discharge of the relative momeutum and

the relative kinetic moment is possible if the body does not turn

sharply and if there is no drastic chan_e in consumption rate.

3. Remark. I - When the body rotates rapidly with the working

motor, Carioliso force and the moments attain a large value.

1
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Formu3ae (1.9), (1.10), (1.13) and (1.15) sho_ thnt the

order of this value is 0 (Qr_._ ,_._) where _, is the angul,_r
r

velocity of the rotation,

Remark 2. It is necessary to take into account the carioliso

forces and moments in case of tile prolonr:ed motion and p_Lrticularly

while investigatin_ the stability.

Rem_irk 3. The carioliso forces and moments and also the

relo tive accelerations of the particles definitely influence the

motion of the bodies like Mesherky's rocket boat in which case/_

is of the order of the lenzth of the boat, and the relative velocity

of baling out of the particles ur is insignificant.

Remark 4. When the motor speeds up and slows down, we will

take into account the effect of the relative accelerations of the

gas particles on the principal vector and the principal moment of the

t, U r
reaction forces, if the order of the ratio -_--- is close to ------- •

2. O_timal Centre _ of the C oplanar Motion of.the Bod_

with Variable mass ' in the .Central Field.

1. Suppose the internal motion of the particles in the

body is steady, then in case of the outflow of the principal vector

and the principal moment of the reaction forces (1.1) and (1.2) are

written in the form

(2._)

.- 12 (2.2)
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per second consumption (expenditure) of the Inass

average outflow velocity,

principal vector of the cariollso forces,

per second discharge of the relativ_ kinetic moment

of the gas particles,

principal moment of the carioliso forces principal vector

of the carioliso forces (1.3) can be expressed as

i m

= 21, t.7x/> , (2.3)

where tL' - is the anagular velocity of the rotation of the rocket;

- is the radius vector of the point of body from which the fuel
F

drops with reference (respect) to the middle point of the outlet

cross-section.

To study the rotation of the rocket we consider the pole at

the point of the body which coincides with the center of the mass

of the given time. The principal moment of the carioliso forces (1.4)

about this for the plane motion of the body may be written in the

form

It -- _, x Tr ..'t-_(l._ -,_ (2.4)

in which _r . is the relative kinetic moment of the particles moving

in the body; _ - is the distance from the pole to the middle poin_
/ C

of the cross-section, /T is the distance from the pole to the point

from the fuel drops•
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Let us suppose the internal :notion of the particles is

symmetrical about the longitudinal axis. Then in case of the plan ,_

motion of the body the vectors,," and _r will bc_ the collinear.

Therefore, we rosy omit the first term on the right side of (2.4).

P.c. 12

Figure- 12

let us discuss th_ problem of detrraini _" a _ihort dur_tior.

pl_me for the body of variable mass with optimu_,1 change into a

circular orbit in vacuum around a sph_rically symmetrical body.

Optimum in this cnsr _hould b" under,_.tood _,_ the least ,,xpen_litur,,

of m_ss.

Consider the system of the polar coordinates (r H + y, _),

where rH is distance of the body from the center at the start of

the motion. The polar axis is drawn from the center when the body

is in the initial position.

i
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Let _ denote the ancle at which the reaction force _ is

inclined to the radius vector of center of the mass. Angle 'I

(fig. 12) is measured from 0 in the direction of the velocity of
Y

the center of mass _. g denotes the acceloratinn of the force of

the attrac_xon gravitetion on distance rll. We kno_: that = "} ÷';

Suppose m - mass, vx = (rH + y)_, Vy = y. Project the

equation of tlle motion of the inertinl center of the body in section

:_ 6 of chapter II on the gene1"alize,l axes of the polar coordinates.

Then by virtue of (2.1) and (2.3) we get

2 2

m($y Vx ) = -mg rl[
- rH+y (rH +y)2 +., ur

' v

cos 'i'- 2 (,.(_I+ _ sin'_,
• rH+Y

v vy . v
-) = ,_, ur sin q" + 2,,,/.' (.4"+ rH+ _;) cos,_,'. (2.5)rH+Y •

In short, we suppo:_e that the-reaction force acts along the

longitudinal axis of the body. Turning of the body is brought about

by the auxiliary motor, let _1 denote the per second consumption of

mass, /)I denote the arl_1of reaction force in respect of the center

of mass of the body and let Url denote the effective outflow velocity

r 71"of gas. Then we will have 12 = .UlU r I

Equation of rotation of the body about the point tlhich

coincides with the center of the mass at a given time, which was

obtained in section _ 6 of Chapter II is now written with the help

of (Z.4) as



" VxV "l '1 " ( ';_2 .1,2 (d÷ )
I ,'l+ .rH _+ y.'" _x = L + _, l_t 1 ' _ c rH ÷Y "

L° " J

, (2.6)

l - moment of the inertia of the body,

L - moment of the usual forces, for example, those caused

by the rotation of the special fly wheels,

Index "I" - d_,_otes the value pertaining to booster engine.

In general, the slmulten_ous consideration of equations (2.5)

and (2.6) minimises the consumption of the mass. It will be seen

that the consumption of the mass cuase_ by the basic change in the

direction and the magnitude mf the velocity of center of the mass

and the turnin_ of the body in accordance with equation (2.6)

involve little expenditure of energy. Under _hese conditions, if

the equation (2.5) determines the optimal progra_ for _! and_ _° ,

then equation (2.6) enables us to select the co_responding program

for L and _ 1.

In each case, equation (2.6) shows that less energy will

be used for turning th_ frame of the rocket, if not only_ but

also _ are adequately small.

2. Motion with the Drastic Chan_e of Reaction Force.

We will find how the angle of reaction forcel (t), changes

if a rapid transformation (transition) of the body from the initial

o o on the circular trajectory is brought about when
state rH, Vx, Vy

the consumption of the mass is the least. Denote the time of motion

• • -,..
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by T. With the above assumption T is smalL. We may think that

durin_ the motion the distance of the body from the

center practically does not change and remains equal to rH.

In case of fast motion we can neglect in equations (2.5) the

difference b_tween the force of attraction (gravitation) and the

centrifugal force in comparison with the reaction force. Similarly

we can also neglect other terms cominE, in due to non-uniformity of

the gravitational field. _' = log m. Then in view of (2.5) we get

the simplifie_ equations of motion as

_y -- - ," urcos.l'÷ 2 _- (' _" sin q:,

_X = " _" Ur sin_ - 2 $,'_,,_ cosj .

(2.?)

Further we have the following conditions

T

o'_ ( %_ur cos_,- 2 ._:i_4 sinLl') dt = Vy,°

T •

( _- ur sin4,÷ 2_.s.,j
o

O i

cos j., ) dt = v x ""I' grH.

(2.8)

In (2.8) the integrands are the explicit functions of time.

The problem posed reduces to finding the minimum of the

function with constant undermined multipliers.

- _ .A 1 (_ ur oosj' - 2_',°_
0

sin_') +/_2 ('vursin4'+2J _' co8_ tit.

(2.9)
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" I.';l_,!' ,: ::_,tu'_";_ _h r"

fornl :

( .'. 1,, )

i_,iu;_tion (2.1"1) i._ _,,tii_lied it': (I)

_V, cot = 0 ._n _ (Ill). U - "_ %.- = ('_,

= (), (II)

,;hen (]) hold:_, it m,,"n:" free mntJnn, ,_nd t;tia car._ i,u ._,ot of

ii_t_r_::t. :_ec:_u:_e t i:_ in sec,,udc, p ..% _,, the,, (Ii) :_hovt_ an

unnte_dy flo:: of particle:; an,; must h_ (:iven ]>arti¢_l:_r attention.

,;hen th_ nutf]o'; of the particl_:, i=_ unste:_dy formula (2.1) and

(?.2b fox" th_ pr _,cil)_l vector aad the princip_¢l moment of re_ctio',_

th' co.,:',JderatJ:,u of cn,'_e (il).

d,iu-_ti,-r_.,.(?. I0) :,nJ (2.11) at',. r,'_lace-_ by:

_in ) - I

(2._2)

These equations sho'_ thutq'--_

(2.8) ar_ then equiv._lent to :

= constnnt.
o

CondJ t, ious

o
-- ' = VUr (% T "_ °) cos q o y

u r ( %' .T \,o ) sin _'o = Vx "'_t grlt" (2._3)

t

• !
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The yield

m T • moo

V

" • ÷ - V X ) •
(2.14)

Formulae (2.13) and (2o14) provide the fast optimal device.

In view of the suppo_ied steady outflow we soy make the rule of the

consumption similar to that of the uniform burning in = constant,

The motion may take place for any len_,tl_ of time; shorter the time,

closer will be the r,:al conditions of motion to those imagined.

3. Motiou with slight change of reaction force• Suppose

the motor is such th:_t caunot develop acceleration greater than g'.

We will find the optimal plane transformation of the body on the

circular orbit of redius rK. In such a casc the conditions of motion

of the body and _s in (1) we may drop the terms, inequations (2•6),

contributed by the carioliso forces of the internal motion of the

particles. In view of a slight ch_nge in reaction force, we may

say, on the basis of conclusiohs in section _1, th:_t the forces

produced by unsteady motion of particles are smaller as composed with

the, per second discharge of the relative momentum m =const.

_quations (2.5) assume the form

2 2
vx gr H

_y = - _" "_)2 " "
r H + y (r H +

._ U r CCS_ ,

VxV_

@X " " -r H ÷ y _ U r sin,l', _ ,, Vy.

(2._5)

i
, t
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Interpreting optimality as the least. Consummation of mass,

we wil-I minimize the functional

T m

- S _ dt. In--° .
o mT

T - denotes the timc during which the .motion tahes place and

this may or may not be known.

?

i"

!TM

The vari:_'.tional problc-,,,,is dealt with in tel-ms of the maximum

principals _-75]. Poutryagin's function of nut problem.

H- _, <_- >,_ur coo4'- h2ursine) ,
gr H vx y _ "

, (2.16)

must be treated as Hamiltons fun,:tion with impulses _i _nd

coordinates Vy_ vx, y.

Corresuonding canonical equations yield equations of motion

(2.15) and Euler's equations

v

2v x v;, " " rx ÷ _" >'I ÷ __._.L_.r_+:_ _2' (2.1"t)

)" - Lc_,H+ :,>3 (eH+ y>2 <,,H+y>,_

i
h ,IP_:p," _ " "

According to the maximum principle theore_,_, the function H

with variables v and _ has a point of the maximum on optimal trajectory.



To obtain interior extremum_ if such a point exists, we

have

-'-w'--" = 1 - u
"_v r

(A_ cos _ ÷ "_2_in_): o,

-yy . _ur (_ si_#- . cos_0_-o.

Calc,zlate the second derivatives of function H

_H -_ 2H

= O, _Ov__$ = U r (_I sink'S2 Cos_),

= _vur ('Ascos%,.'_ 2 _in_).

The necessary and sufficient c_nditions for the function H

to be maximum show that the extremal may consist of the parts of the

following trajectoris:

Free motion if

t

7

-- O, I - Ur. ('_I COS_÷_2 sin_ )>0, _I sin_-_2 cos_- O; (A)

Motion with variable reaction acceleration (in value or

magnitude)

_2 --I sin_ ; (_)_1 = ur cos_, = Ur

Motion with largest reaction acmeleratlon g, when the

following condition_ are satisfied

¢, __L _. ur (_Xco_@÷_2 sin@)-<o,_ si_&_2 oos_-o.
" U r _ 1

(c)
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t

j

In order to carry out optimal motion of the body on circ,llnr

trajectory with the help of trajectory with changing: acceleration,

e

formula, (B) must satisfy the canonical syste,_ (2.15) and (2.17)

o o T r_ _._-_-"
VX = YO = O; t = T, v = H_ E ' YT =when t - O, Vy Vy, vx, y

rK - rH. Since H dons not depend on t, therefore, from the

ca.nonical _s_utem it follows that integral H = constant which is

satisfied by (B).

Differentiating the first equntion of the system (2.17)

and substituting th. va_uc of"A3, the syste; (2.17) is reduced to

two equations in terms of -_1 and _2" Putting the values of _1

and _2 from (B), the system (2.17) _s transformed into

, 2vx
v . ctg _ ,

_ctg_= rK+ y _H÷ Y (2.18)
t

.. 2 ct_#+ _ 'i_+ y rH ÷ y)2" (r_+ y)3j

Differentiate first equation of the system (2.18) and putting

the va ue of_ from second equation, we get an equation of second

degree in . Assuming that _ _ _ , We get

_v " Vx H'2
I ctg,)2 rgrH Y (1 - 2 ctg2_)

(rH ÷ y)2 y

2 !.COS _,_ Oe

J
(2.19)

The relation (2.19) is obtained as result of comparing the

terms of order rH 2 in the too equations in obtained in different

ways. Therefore, formula (2.19) is valid only if the terms upto

order rH 2 inclusive are repressed in the equations.
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On trajectories with pr,_gram reaction acceleration, in view

of (2.16) and (2.17), we have

i 2
It = --2-1 Icos Vx

Ur t. rH ÷ y

grH ÷ _ Vy sin h - const._ me

(r H ÷
(a.2o1

The principle of maximum states th:It nr indefinite manoeuvre

time T we have h - O, and when the time T is known h may be different

from zero. However, in this case also the boundary condition_ in

c,nJmnction with (2.20) make h = O.

Usin_ the first equation of (2.18), formula (2.20) is

transformed into

H- "' ( + y)"co-s"_" v - v ctg_ - -- O.
u r rtt y x rH + y

(2.21)

y = constant.

Formulae (2.19) and (2.21) can not be satisfied unless_#-_--

equation (2.18) vgives y = O, Since v = y, we have
Y

Consequently, the body must move in a circle. IIowever,

the reaction force on a coplanar circular trajectory in central field

must be equal to zero. We can not have directed motion. Therefore,

the exact optimal coplanar displace::_ent of the body on circular

trajectory can not be a trajectory with programed acceleration.

Consequently, the exact optimal manoevure of the motion consits of

the trajectory of free ,notion (A) and the trajectory of largest

reaction acceleration (C). Application of non-coplanar transition

trajectories, all points of which are equally distant from the

__:_4



attract[a,.'_¢ez:tor, h:_s b_on _linettt_s,,dby A.I. l,urv. in hi:_

Formul. (2.19) is not .mploycd to find _!_!,r,_::im:,tQopti,,lal

motions for w;,ich th(. exactrl._;_ of th,_ fu:_etiou & (t) is leu,_ na

........ ) . I:l _,_':_ :1"t_l_L_4 and 5 approximLtr ," u itions are

rH

worked out for the case (B), which oati.'_f,v the uqL_atioas (2.15),

(2.17) :u_d the rel:_tion (.'.20) when h = O. These conditions may

include t in %_articular_ lar:_est roaction accelel._tion and lariat, st

reaction force,

For the treatment of approximate optimal condition_ we set

up

- rf{ r H + y - vx.

Then the system (2.15) is written in a more couvenient for,,

y _/_ r_+y r

(r H _ y)2

r_t +Y

(rH÷Y)

÷ V %1r Si_._; (2._)

= Vy.

Vy,._, and y have the same infinit_,simal order.

i
t
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r.. - r,.
be theft the ter _ of the order ( a n )-_-- do not ,_ttain c,n:si orably

rH

hi_-h ma_,,nit:,dein tile manoeuvre time T.

I

,':xpreso v
X

= + 0 (r_t

form

in terms of _ and th(,n in ae,.ordance with (2.q8),
I

"--6--
'" ). .;qu._tions (2,22) are tl_en written irl the

V " V U

y r cos '_o + 0 (rH

q
--_-

_,,, _, ur sin_o + o (rH ).

I

Therefore, p,'ecisely upto the ter_:_sof order (rK " rH F
• @

r H

We arrive at the results (2.q3) and (2.14) valid for abrupt manoeuvre.

Satisfying the boundary condition on the variable y, we get the

condition

v_T- ur cos _o

I

o_ (v_ v ) dt = r_ - + 0 (rH 2 ).rH0

(2,23)

Formula (2.23) shows that if vO und rK - rH do not have orderY
I IT

rH 2 , then cos _o _ O and _o # _ _ " The approximate

optimal conditions thus obtained satisfy (2.20) when h t O. Actually,
- I

the function H in the result (2.20) turns out to be H = 0 ÷ O (rH

-I
u ).
r

If the manoeuvre time T is given, the relations (2.q4) and

(2.23) must be satisfied by the law of change of mass depending on

one parameter and th:n we choose this parameter and the time T in
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,uch a way that the l,,w satisfies the con_ itions (2.14) and (2.23).

Exa_,_ple 1.
- _t

Let us take the law of ci_ange of mass m -- m e
0

'_h_n conditions (2.14) and (2.23) assume the form

_UrT = V, _Ur T2 cOS_o

This gives

+ 2v°T - 2
Y

2 (rK - rH)
T- , , , _ V

T "
3v° ur

Y

(rK - rH) m O.

Example 2. Consider the direction inc!uding the trajectory

of largest reaction acceleration g'. In the interval (0,_) we have

V_-v o; and in conforr._ity with this for the interval _, T_ we write

v. v
0 U

r

Conditions (2.14) and (2.23) enable us to determine T and

in the form

i

rK " rH V

o r.._
V

Y Y

rE " rH V

"[- vO _-'-'_'- •

"Sxample 3. Take the direction including the trajectory of

In the interval (O,'T) V. vlargest reaction force.

accordingly in the interval ('T, T) v: In ImO _I -_ (t

T and "6 are equal to

- rH u - UrT,= , rKv_ _ + r 1 - (I + ) e

and
o

,'I$,,T - _ (1 - e

V
m a

Ur).

11I
e
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high then we may get approximate optimal manoeuvre with increased

e._a c tlle _s •

Equations (2.22) are written in the form

(a.24)

Here_ =_-'_-grHr K is angular velocity of the body on finite
I

circular trajectory. This value is of the order of rH 2 .

Equations (2.18) bocot,e

ctg_= - 2_ctg_+ 0 (rH'1),

,__. _ 2 ot_÷o (rH'_).
(2.25)

We consider the case when the value of

Equations (2.25) have a unique solution

W
if not close to _ .

= _o " 2_t ÷ 0 (r_1). (2.26)

We will find the solution of equation_ (2+24) in series and

_astrict it to the first two terns.

Vy = v ° Ur (v _o 2_ I'L_o _o_y" - vo) cos - .u r (_'- vo) sin t +o (r_l),

o 1 _ t o )-- ;= + u r (_- sin o + 2 v t ÷ u r cos o o



e

-

L

t

_._;,-_ _o,_-o_ooo_o°_ __-_o__-

t

- _J_.'.:¢. c:r. _o

t

0
O

The boundary conditions: v
Y

are satisfied.

(_) =_J_(T). o, y (_) = rK - rH

r

|

The l_st equ-tion of the syste_:_ (2.27) yialds

i rK - rH - v T q
( v. v ) dt - ......... ; " -_') 42.28)

o Ur cos_ ° + 0 (rH .

Therefore, in view of the first two equations of the system (2.27)

we find

° _oVy- 2_i T = ur (v

o÷2_;_- _-_c, K- _) - _ c_-

(- si__o * a_ oo,_o) + o (_). (2.29)

Equ_tion_ (2.26) - (2.29) enable us to find an exoression for

the mass at the end of the motion

mT • mO exp .... .u_ 2v_ _, _ ) (_._o)

.... ...... . ....... _¢._lM_m,_m_l _

i



i

Set _e " _'o +_"o' in (,?.,29) where 'o is obtained

from (_.13_. We tilen get the initial angle of inclination of

reaction force

_" ;51_v; (rE rH)"
o = 2V 2

The inst equation of the system (2.27) in conjunction with

(2.28) gives the condition

U r COS_o (V_ VO ) dt - 2_.U r sin_o " dt I (V. Vo) dt -
0 0 0

- V;T (1 - 2-._ tg _0 ) + n>O T2 +

+ (rK - rii) (I - a_T tg _o ) = 0 + 0 (r_{1). (2.31)

CondiUions (2.3_,) and (2.31) can be satisfied by a set T of

the law of change of mass as are the onditions (2.14)and (2.23).

_he function I{ used in (2.20) turns out tc be equal _o (in

view of (2.24) and (2.25)

An_le _' is determined from (2.13) and, therefore, we get
o
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5,

1

Consider the optimal direction when_ is close to -_ . Put

=_- -_ and assume that i_ is is of order (see para 4)= Denote

by 0 the values which are of the order of_
n

Equations of motion (2.22) can be put in the form

_" I v E2= -F-._ Vy -i --y- . _ ur (I - -F--) , 03.
rK

(2.32)

(2.q8) can be written in the form

v

" rK r--_ -

,u

= vr_ ÷ o3• (2.33)

(3.32) and (2.33) we obtain a second degree equation in

solved will give

Differentiate first relation in (2.33) and then using equations

w:_ich when

= - 2J3÷_+ 0 3 .

Formula (2.34) and the second equation of the system (2.32)

enable us to determine the law of change of inclination angle of the

reaction force

_= 6o . 2JO_t + _o_o__ot + Ur
rK r_ o

o (Eo) = o_.

(v. Vo) dt + 03,

(2.35)

I r
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Integrating equation (2.32), we get

O

otl
+ -

r E

_ ( E _ 2_tt)OUr.,) yo dt÷ o3, v "-'_#÷_o ÷ c3'

#o= :- :#°--°oy ,y = #or÷ o_ _- 2ntl÷

+ __r ( v_ Vo) dt 2 + u ( V. V ° dt I + O>,
rK o r

(2.36)

Formulae (2.36) show that the optimal direction tokes place

only when v ° and rK - rH ere infinitesimals of first _der.Y

Satisfying boundary and initial conditions, we get

o = O3'
T I% :ot U r- 2_t + rK + r---'_

t

X _:o + Ur (v- vo)_dt = rK - rH + O31

O

• ' ' O

(2.37)

(2.38)

If the last equations are not known, then the rel_tions (2.37)

enable us to select the parameters of the law of change of mass and

the time of motion T.

!



Let us c!Leck the conditions (2.20).

anple_ in (2,20) _e cot

212 -1
:t =----(_.- v.) • u

u " y r
r

..@

In ,neeordanco with (2.36) we fi1:,i that

H -- 0 +u "1
r 03"

r

If we restrict to teri:1_ of fir'_t order of infinitesi_:al then

(2.37') will be written as

_-_Z_q_ I -a_: - 2_:t + o (r_'_),mT = moe u r ÷ 0 (r:), o

U r ( _ - 2_T) ( v. v) dt + 2f_u _ dt ( v- re) dt 1 ÷" o o r
o o o

"1
, : T (z -j?T) = r.,- • o (r:) (z _)0 0 ,_ rH " "" "

0

_xa: ple 4, Let us see how the law of chnn:_e of mass m = _:l
o

",N and when direction hasis aDplied when is close to

-1
preciseness of order rlt o

I_ accordauce with (2,38) and (2.39) we get

o

= _0 " 2f_t, E ° = vv

go

• - _ (2 (2_ ÷0_ , T r_ rH.'o EoUr) o -
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Elix,Jinating from second equation , we g_t a _.ec._nd degree

equation in T which gives two values of T

_z_o --_/ 16Ji(rE_ - rH)

- °

If V_ = O, rK- rH =Otr. and _o #0,0, the:_o,We#:_a_.o,nOt=+have Eo
direction. If rH and vO _ then T --optimal

In such an event -
3  oUr

Example 5. Suppose the conditions are the same as in example 4,

then we will exa_::ine the direction including the trajectory of

largest reaction acceleration. To determine the time of fre_ motion

T and the time of ent£re motion T, we have, in accordance with (2.38)

and (2.39)

rE - rH

0

Similarly, we can deal with the direction including the

trajectory of largest reaction force. (see example 3).

3- Optimal Dire.ction of Non-Ooplanar Motion of

a_Bo_with Variab!e_ Mass in tn_e Central Field.

1. Equations of motion. Let us deter:_ine the optimal

displace ent of the body with vnriabl_ mass on a given circular

trajectory in.,tke centra_ field when the decrease (3.1) of mass is

minimum.

L
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The position of t,_e body is fixed by sph,-fical coo:.din:_tes

(rH + y,_, 0 _, where r H is the distance of the body from the

-ttract_n:; uc,+_er at the be" :,ngn_ of the motion. Denote by rK

the radius of the liven ci:+cular trajc_ory and take the plane of

tr_,jectory as the plane of readinc_. (fig. 13). For con_enance,

suppo, tile reaction force _ acts along an arbitrary axis of the

body. The rotation in the body is br_u_:ht about b# auxiliary t_totor

of small pover or by specinl fly wheels.

The direction in w,ich the reaction force acts is deter: ined

oy twr angles:_ the an;]le between _ and the radius-vector and

the angle between a line p,,rallel to _ and the tangent to the c_rc_.t

circle whose plaae passes tilrough _.

vie will sssumo that _ne internal motion oW _arti_les i:_ the

body has been set up. Projectin_ the equation of motion oi Juc,'tlal

center of the body (ziven in sactions, cha_+er II) on 7eneralized

axes of spherical syster_ of c ,nditions t we get

r

: Y
L

0

2 v_) (r H =. (v_ °+ + y)-l_ - mcrlI (rH + Y)-2 +

,,, [+_.,. v_,¢,-y ,-etge> (r_ .,-y>'"_- . =l_ ur sin_'cosI+ Oq',

m [$e, (v6vy .,. v$ t_e> <rH .,.y)-l],,ff. Ur si,,,._siny+ _ . (3.1)
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1
PHc. 13

Figure- '13

In equations (3.1), we hnve m - mass of the body, Vy = _,

v_ - (rH. :)_cos0, ve . (rH. y)0, g - accelerationof attr_cti_

force at hei,jht rH,_ - per second expenditure of mass, ur - constant

effective velocity of gas discharge. Jr' J_and J_ denote the

proJeoti_,o_,eof principal vector of carioliso forces brought into play

by tho motion of particles in the body.

In accordance with (q._,,v_ principal vector of carioliso forces

is written e:s

-e

where vT is the velocity of that point of the body from which the

fuel falls, vc - is th_ velocity _f the middle point of the outlet

cro_s section.

!

1
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I

In accordance with Euler's formula for velocity of points,

we have

p - is the length of the space inside the body occupied by moving

gases;_ - is _ugular velocity of rotation of the body I - is unit

vector along any axis of the body, which is in the same direction

as the rotation force.

Projections of o5 are given by

_ = _ + __v_,tg_
rH+Y '

o_0 = -_sin I
v_

rH+Y'

(_ = _cos_+
rH+Y •

These enable us to find the projections of principal vector of

Cariolis forces. They are

Jr - " 2_ p sin_ _÷ (vc_cos_+ v0 sin _) (rH ÷ y)-l] ,

J_= 2210.___/cOs$cOs_- ? sinSsin_+

+ V_ (cos$- tg@sin¢_in[) (rH + y)-lJ,

J_ - 2_p [_/cosSsinr+ rsin_cos_.

+ ¢,,_tgOsin_cos_+v0 oos_)¢r.+ y)'_]. ¢3.21

i_ +-_+'+._:,+% , ..... :.... ........ ---+ '_ .......
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In order to study the rotation of the body Euler'_ equations

may be deduced from section _6 of chapter _I. _uppo_e the

internal motion of particles i_ symmetrical about an _rbitr_ry axis

and center of mass is located on this axis. Than the relative

kinetic moment of particles _r calculated _bout the center of mass

is zero. The principal moment of carioliso forces, in accordance

with (1.4) is given by

2 2
(3.3)

_c - distance from the center of z_ass to the output c_oss

section; _T " distance between the center of mass and the point

from which fuel falls; _I " Vectori_l component of angular velocity

of rotation of the body perpendicular to its axis.

Formula (3.3) shows that moment of carioliso forces of

internal motion of particles is equivalent to the moment due to the

resistance of liquid medium. Therefore_ for least expenditure of

mass we should give a V-turn to the body either with disconnected

motor or with very s_:all angular velocity.

As in section 2, we will think that the loss of mass is

fundamentally brought abo_t by the change in magnitude and direction

of velocity of the center of mass of the body and that for a U-turn

the body requires little amount of energy.

-La__

/if!

I
:
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2. l_:otion Under Sudden _h,,nze in Reaction Force

_ie will find the function of chan_,_e for the an,_:les of inclinations

of reaction force _ (t) and [ (t) which effects a ra':,id transition

o o v$ _oof the body from the initial stage Vy, v_ , , rH, to the

circular trajectory of redius rK with the least loss of mass. Denote

the time of motion by T. _ince T is small, distance of the body

from the attracting center does not change rK = rH and the ankle

is not chanced.

t

......J

To determine ra_id optimal m: neuve we neglect in equations

(3.1) and formula (3.2) the dif-ference of attraction and centrifugal

forces and also those ter:_,s which come in due to non-homogeneous

gravitational field as compared to the reaction force, v- los m,

and we _et the followin_-, equation of motion of the body.

#c_= -QU r sin_'cos[- 2v _ (_'cos_cos /- _sin_sin[ ), (3.4)

The conditions are

o

o
(%>u r cos_- 2v_J sin_') dt = Vy,

o

o

[VU r sin_sin_÷ 2Q_ (_ cos_in _÷ _sin _cos_'i]dt = %r%
0

(3.5)



I
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The problem now reducec to finding the minimum of the

function with constant undetermined multiplies.
i

W _ 2,;p _ sin _) .

+_3 [_r sin_sin_'+ 2Vp (_cos_sin_+ _ sin_cos_)_dt.

(3.6)

Euler's equntion in variable $ is written as

Ur ( _I c°s_+_2 sin_c°sr +_3 sin_sin_) +

÷ 2p,_(-_ sin_+% cos_cos_._3 _os_in_)-

In variables of_and _we obtain the following Euler's equations:

2 cosk cos[ +'_ COS _sin _') = O,
3

I

(3.8)

(_ur - 2pv ) (%2 sin_-A3 cos_) sin_.o. (3.9)

Note that the equations (3.8) and (3°9) hold for free motion

when v = O. Since we are considering rapid maneuver of change of

velocity of the body at the given height, therefore, the maneuver

including the section of free trajectory in the central field is

not of much interest.
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When the combustion is steady we have in m = const and v = - $2.

This makes _u - 2_ Q _ 0 and equations (3.8) and (3.9) are
r

equivalent to

(3.1o)

(3.11)

Equation (3.7) in accordance with the formulae (3.10) and (3.11)

assumes the form

Equations (3.10) - (3.12) show that the c nstant angles of

inclination of reaction force are responsible for rapid optimal

conditions.

_= _O = const, /= _o = const.

We satisfy the conditions (3.5)

u.oo,, ..

( _T vO) u r sin _o sin _o v°m _ _ e

6quari:_g the relations (3.13) and adding, we have

(3.13)
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I:It = _I0 V _! 02_, 02 ÷ ( o )2 ÷_xp (- Vu q), V Vy _.- v_ v_

(3.q4)

In accordance with (3.q3) and (3.14) angles of inclinntion _,f

reacti_n force are given by the equations

___o v-,oi, ° o oc°S_o y ' o " v_ )_ ÷ v_

cos o 2 02
. v_f) ÷ v_

, (3._5)

sin _o = "

- vc_ )2 + v_

Formulae (3.1/+) and (3.'15) deter ine raid optimal maneuver.

The time of motion T r_a:z be arbitrary. But the l'sser it is, the

more real will be the conditions of motion.

3. Motion with Gradual C_an_e in Reaction Force•

Suppose the motor does :tot produce an acceleration greater

than g'. We will find the optimal transition of the body from the

state Vy,° v_° , v_ ' rE' _o to the given circular trajectory of.

radius rK. In the equations of motion (3.q) we inay delete the

projections of principal vector of carioliso forces• Since under

slow conditions, the forces induced by nonuniform t,lotion of particles

are small, we may not confine to the condition m = const.

EquRtious (_.I) can be written as

.... J
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_ = v_ (- Vy + vo tg _) (r H + y)-1 .¢ur sin_ cos_ ,

}_= - (vyv0 + v$tg_) (:H ÷ y_'_ - ,u r _n _'sin _r,

(3.16)

--vy, @ - v O(r_ + y)-1.

We w_ll minimise the function in para 3 of section 2 in

terms of maximum principle. Poutryagins function of our problem

¥

r
(

H --,> (I "_I Ur c°s_t" _2 Ur sin_c°s_'_3 Ur sin_sin_) +

+ ,hI + v_) (rH ÷ y)-1 _rH +

÷'_2 vc_ (" Vy ÷ v(_ tg l;)_ (rH + y)-1 "_3 (VyV_ + V_ tge) (rH + y)-1 +

(3.17)

must be regarded as Hamiltonian function with impulses A. and
1

coordinates vy, v_ , y_ _ .

Thus we obtain the following Eulers equations.

_'I "_2 v (rH + y)-1 -A_ v_ (r_ ÷ _)'_ .'_ --o,

_A2 + 2_I v_o (rH + y)-1 +_2 (" Vy + ve tg_) (rH + y)'1 -

- 2_ v_Ftgl_(r H + y)-1 = O,
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>3 ÷ 2_I v@ (rH ÷ y)-1÷_2 vm t_ (rH + y)-1_k3Vy (rH ÷ y)-1•

÷ _5 (rH ÷ y)-I m O, (3.18)

÷_2 v_ (Vy- v_ t@_) (rH ÷ y)-2 ÷_3 (VyV_÷ v_t_ 6) (r_+ y)-2

-_ _ (r_ , y)-_= o,

Equ,_tions (3.16) and (3.18) must be solved to,tether with

o o

steady boundary conditions: t m O, Vy -- Vy, v._o- v_ ,

I

v0 -_ v@° , yO = O, _ --@o t = T, vTy -- O, v -- rK , v0 -- O,

T = O,Y = rE . rH' _T

The function H in variables 9 , _, _ attains a miaximum on

optimal trajectory (#80_.

have

_or internal extemum, provided such a point exists, we

-,_ ur (_ sinT- _ _o__) si_= o.
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Compute the _Jocond aorivatives of It

'_-rJ-F- Ur sin _ oosW-,

-_2it

_---_? V U r (_2 sinT-_3 cosy) cos_, _2_2H

- V Ur (_2 cosy+ _3 sin _) sin _.

The nece-_sary and sufficient con:i_ions for the maximality

of H show that the extremal may consis: of the parts of following

trajectories:

Free motion if

!

v-- o, _ - ur___ _os#+_a "i_°s _÷_3 sin#_in _')>_0, (A)

Motion with variable reaction accelerction_

sin_ sin_; (B)

Motion with greatest reaction acceleration g',

(v)
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In order tlu_t any l_rt of traject_rle (), (_) or (V)

m:_. be iuclu'ed in optim _ tr_LJ_ctnry it ir to be _;een that

e,:u:_tions (3.16) :.ud (5.I_) satisfy th,: tr:_jectory referred to.

Integral I{ = h = coust, must be satisfied along the optimal

trajectory. If the m_n_uv,r time T i_ not knoan th_,r h = O.

On th_ traj_cto_'_ (!_), th_ above _ntegral h_s the form

)I .H = u r"S (v v_ ) (r H + y - gr H (r H + y)"

Formula (3.19) shows, th,_t if the optimum tr:_j_ctory e_,d:_

at the plonued sector (B), ther; a;_ a result of bo_ndary condition,s,

a ch:_nge to _ circular orbit h = 0 will also t:_ke place :_t a give_

time motion T.

h'e will use i,te{_ral (3._0) f_r cheching approximate

optJ real conditions.

i



.r.___T ............... ]

In par_ 4, we will derive approxi.m_te initial conditioL_s

for the case (B) satisfying the equations (3.16) ;_,.id(3.1_) :_nd the

bounda_-y conditions. These conditions znay, in particulnr, include

among them the sectors of free motion of the largest reaction

acceleration and largest reaction force.

Therefore, these conditions completely solve the problem.

m a

System (3.16) assumes the form

_y = - 2_g_r H (r H + y)

._l_
= 1 (ri{ + y) 2

- _v_ ri_tc8(r_÷ y>

+ _2 (rH + y)-I + v_ (r H + y)'l-_r¢OS_' ,

/
/

._A_
2

_(vy- v_ tg_) (r_ + v)"I

+¢u
r

sin _ cos /,

_.A_

2 . _2 tg O(rll+y) -2 -

2
- gr H tgO (rH ÷ y)-2 . VUr sin_sin/, (3.20)

- Vy, O- v_ (r H + y>-1.

Remove _4 and _5 from the syste, l (3.18) and using the value

of the equntinis (3.18) is replaced by the system

I

2 ('H÷ Y>'_ 6 _H (rH+ Y> T

+ _a al (rH +y)'a + _) (vyve- V@j - V_ t_0) (r H + y)-2 +



_3_-,/,.

+ _'Ur (_2 cos_+ _3 sin)Z) (rH + y)-1 sin_= O,

2 ÷ 2 2,I rH - +

+}'2 (" Vy + v_ tg(_) (r H . y)'q - 2_,3v_ tg_(rll ÷ y)-I = O, (3.21)

2 (1 + 3 tg 2_ ) (rH + y)-1 -6 "'_'_/_.rH tg 2 _(r H + y)"+_3 grH

÷ tg2_. v 2 (rH + y)-2 vu r (2 7,1 s_n,4,s_n"' " )/÷
J

+ _2 tc_inQcos _,-_3cos-_)(rH + y)-1= o.

We note that the quantities g, _'Ur, Vy, _, v 6, rK -

-1
are o" zero order. Hence _ has order r H .

rH, rH

4. &pgr.oxima.te Optimal Controls.

Suppose the transition of the body on the circular trajectory

is quite ranid so that the terms of order rH do not attsin

relatively hig_- values during the motion time T.

system (3.20) precisely upto terms of order r__-The

in the form

--- _ _ _os_' _ ¢, sin_ cosFSy r ' = Ur '

e

is written

(3.22)

\
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Equations (3.21) precisely upto ter_:_s of order rH)_-

written as

are

O O

")_1 =_ + alt' _2 =)'2' )'3 = _' 3 + a3t'

where a I and a3 are constents. For programed conditions (B) we

have

-)2 ),[ )2 -21 + ÷ 3 - Ur"
(3.23)

This Cives a I : O, a 3 : O, _: 4 0 : coustt _: _0 : const.

Steadiness of the angles of inclination of reaction force

and the formulea (3.22) show th'.t pr<,cisely upto terms of the order

r_,}_ we may u:]e forluu_e for sharp o,_tima I ma_oeuv, re. ancl (3.15).

Sat' _"__s_j ng the boundary conditions in y nnd t we _et the

conditions

T I
m

Vy° T - u. c°s_° _o (v" yo ) dt = rlc - rH ÷ 0 (rH -_" ),
(3.a4)

0 sin@ 0 sin f ov_ T - _r

T I

(V- _0 ) dt -- - rH @o + 0 (rH-_"),
0

which toqether with (3.14) u11_t be satisfied by the law of change

of mass v (t) and the time of motion T.

Time of motion is given by

i
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(r K - r,;) sin _o
T __ • • ,

vyO s[n_o si_'! '[0- V; cos_ O

which substitutes one of t;Le conaitions (_ '_'<_ An_les of

inclination of ronctie:: force arc deter. :ipod by (3.15).

Thus obt:_inod n,,_[_roxim',te optiu:_.l conditions satisfy

rc.lntion (3.10) when h = 0o Actu_.-,.l:_the fu_¢tion H ns u:;ed in
I

- -I)
(3.19) _urns out to be oq_::-:l to H -- 0 . 0 (rll T u r .

_Zxa:!ple 1• Let the law of chanF'e of [lass be ta_.en as

_ --" m e
0

( _t + ft 2)

i

Finding the constants _and fsuch that tlley satisfy the

bound:_ry Conditions, we have

_T ,/_2 ,; _..L..v---- % -- ---- I/

r

2 * T = " "r c°_ '/"o

The constants are thus equal to

L-

I.- - - ° T) coe'l_' + 1 VT'I .f= 6._I _-_ (r_ r_ _ o T

Reaction acceleration can not be sreater than g'. Therefore,

the specified law of combustion can be taken in the case when

I

!
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g,_u r (_ 2#_).

Exa:_iple 2. Consider the conditions includin;_ the trajectory

of largest reaction acceleration g' and free motion. In the

interval _ We have v= _ - g' u t, in the interval
_. O

let there be free motion and V= V ° - g' Ur I T1 and in the interval

_2, T_ _= Vo - g' u; 1 "L"1 - gO u; 1 (t- _2). _T'I and _2 are

deterr_ined in such a way that the bound',ry c_nditions are satisfied.

We have the conditions

Thus we get

T m cos,_oI

(v _'T)'I c°s'1 _ o + V CO')"I _

× (v- g,_)-1cos-1$o" v Cg,)"1 _ .

0 0

If the quantities Vy, _o' v@ , rE - rH, rK _ota-re rel_tivel_,

large then we may get approx,.mate optimal ma:o_vre _ith increased

accuracy.

-1
Equations (3.20) precisely upto terms of order rl[

written as

are

_j



i
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vy + _u y,
I

sin_cos
="_-- r

(3.25)

$@ -- . _u r sin_sin %

- Vy, rH#- v0 •

4
Here_ = _rHr K is the an_ular velocity of the body on

circular trajectory. This is of the order of rH_ .

-1
Omitting the tez'ms of the order of rH

the system (3.21) we get

, in accordance with

= O.

This gives

"_1 -" _1 ÷ altl _2 =

In accordance with (3.23) we find

Angles of inclinntion of the pull in view of formula (B) are

determined in the form

T- 1to ÷ 2r_t otg_'o =in Yo ÷ o (r_>.

(3.26)

#
I



O
For t]_- s:_!:oof si:aplic ty, l_t v

-I/2
rH •.

, rH Oo , _ be of ord,,r

We obtaiu a _;olut[on of equntious (".25) w_n th,. an:71es of

inclination and]are _:iven by (.,.26) _,_ithan accuracy u',.toU_r I).

ovy = vy- Ur (v- yo) eO=lo - 2%2 o + Ur (:- V)o _*_o co_ )o t,

1 i_ v°t ÷

3 t

+-/-!2,, _o_$ ° _ (v- Yo) at- 2am r
0

(_- %) t cos _'o'

O (V- VO) sin _'o sin _,V = V_I - Ul,
(3.27)

t

Ot- A _.0t_ Ur -- ty = Vy - cOS_o ' (v" vo) _It -

t

i (.j_ VO ) dt,- _u r si,__'oco_ Yo

rH_= rH {_o - v_ t - U r sin q:O silt _0 ( v. VO) dt.
0

T = O, _T = O, vJThe bound:_ry c nditions are Vy =0, yT = rK

" rH' rll@T = O.

T

[ (V- vo) dt =- (rE - rli- VyT) (ur cos _o )'I
0

q
m

÷ o (rH _ ).

Thorefore, in accordance with first three expr,_ssions in the

syste:_ (3.27) we find

o 2j? _oT = u
Vy - X" ( "_T" vo) (co_4o ÷ 2./_T sin_,o co:_ _o ),

I
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= _r (v_- ,4)(- sin_o cos Yo÷ 2-Qri'costo),

(3.28)

Squaring the relations (3.28) and adding, we get the expression

for mass at the time T

• v-2 (:,_ . r )i :'°mT - m° exp - V u; 1 q " o g _

(3.29)

_ut i_ (3.28)_o =_, ÷ _,,o, _, + _,, where$'0 ")fO = 0 0 _ " 0

and _o are found from (3.15). We will then have the corrections

for initial angles of inclination of reaction force

.. O

4,'" -- _vY
2V_ (rK rH) ,- _' = O (rH1).

The last two equntions of the system (3.27) preci_

-q
terms of the order of rH give the conditions

.y upto

T t

_roOS_o f (_- _o)dt- 2_ r sin_o oos_o ' _ __-
0 0

÷ (r E - r H) (1 - 2._T tg_o cos _°) = O,

T

0

(3.3o)
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The conditions (3.29) and (3.30) will be satisfied by T

and the law of change of mass in the same way as the conditions

(3.14) and (3.24) did. In particul_,r, we may take the laws of

change of mass as considered in the above examples I and 24 The

formula (3.29) silows that the consumption of mass does not depend

on the law of change of mass.

The function H and employed in (3.19) in accordance with

formulae (3.26) and (3.27) is equal to

Trigonometric fun_tions of the angles _' and _' areO O

deterL_ined by the formulae (3.15) and hence H = O + 0 (rH1u "I)r "
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Cwa I_ER VIII

Presently there is wide application of the motion of bodies

in air and vacct_ which is produced by the discharge of mass. It

is anticipated that in future this principle will be widely used for

producing motions on earth and other pip-nets. It may be stressed

that experiments will have to be carried out using maction motors

for the development of automobiles and nero-floats.

It will be of interest to study the possibility of developing

mono-wheel transport using sledges and automobiles with variable

masOSSe

1. Investigations about the Sta_illt_ of Nano-wheel

Carriage wit_ ,variable mass.

1. Setting out the problem. The main problem to be considered

in this connection is the tilting of mano-wheel carriage with variable

mass on the horisontal plane _9_ taking into account the inter_al

motion of particles and different kinds of resistances. Stability

against tilting will be ensured by moving forward the supporting wheel

6 (Figure q%). The uniform etraightline motion of the carriage will

be amymptotically stable if we use ideal autopilot which wall deflect

the air or Ins rudders proportional to the angles of inclination and

turning of the plane of working wheels.

#
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The mono-wheel carriage with variable mass (fibre 14) is

made of working wheel 1 with constant mass and a double passenger

cradle 2, freely rotating on axes and oar._ying on its reactlon

motors _, gas rudders 4, air rudders _ and the fuel tank. System

c9, _,#) io ,,_.dco,/_,,_,,#,_ isp=al_.1tothesyst..

(7' 9'/)' the system (0, x, y, z) bringa the wheel I into motion
• f

but is not responsible for its own _jratio_. The axes _andO_are in
/

vertical direction, the axes _ and Oy lie in tLe plane Qf the

working wheel, axis Ox is directe_ towards the point of ion%act D,

axis Oy is horizontal and parallel to the lima EL which_ is the line

of intersection of the plane of the wheel and the horizontal plane.

P.c. 14

2. Equations o¢ motion. The uotion of the carriage in

dete_ained by six coordinatesl two Goordinates _ _ _ of the point of

contact, thr_e Euleriaa angles of working wheel _1,_, _and the

tilting angle _2 of the cradle, These coordinates are related by



two non-he,chemic relations.

6 L" " "_1 co:_, _- - a_ 1 8in_.

Denote the angular velocity of rotation of the nyetem

(0, x_ y, z) by _ • Then the angular velocities of working wheel

•_d the cra_. at. reepect_v.17eq.a_to _ -_. _1 _'_2 "_÷'_2Q

where _ £e orthognal to Oz. Pro_ectin8 on x, y, s axea, we have

_°lx " t'_2x "¢_'x' C°x " " _ co,_,

(1.1)

all

Vectorial. equations of motion of working wheel are written

ZI¢_ I . _Z 1% - rD XS ÷ ÷ ÷ -'{_'1' (1.2)

"11 (% + (_ .×%) ,, .1 _ ÷ _+_'÷W 1, ('1.3)

Where m I ill the mesa of wheel,

Z 1 I 1'1°:iI0 A 1

0 0 01

is inertial tenmor of the wheel in the nFetem (0, x, y, _); ; - volocit_

of the cemteF O; _D " radius vector of the point D with respect to O|

- reaction of the plane at point D; _ - principal _ector of the

reaction one the-axillOzi W1 - reeilltance O_ air when the wheel moves,
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LS, LT and _1 " they are respectively moments of rolling friction,

reaction forces on Os and air resistance, dash I on the head denotes

derivative in the system (0_ x, y, z).

Vectorial equations of the cradle which is regarded am a body

of varAable mass (see 6, Chapter IX) are written as

• "24 ÷ " Ms, (1.4)

=2 c ÷_x ;o ÷_2 x _c ÷ _2 x r c 4-_ (_2 x rc -

" "2_" _ * v2 ÷ R' (1.5)

where m2 is the mass of cradle;

3:2 ,,

L2 °°s2 _2 * )2 ainZ _2

(A2- az) sin _z cos_2

0 o 02

!;
0 ;'

t
J

;!

°il
is inertial tensor of cradle in system (0, x, y, s)! A2g B2, C2 -

principal moments of inertia; r"0 - radius vector of center of 8rarity

of cradle, As a result of change of ass, the quantities a2, A2, B2,

C2 and rC are regarded as functions of time, However, it may be

noted that while computing the derivative with star, masses remain

fixed,
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In equations (1.4) and (1._) we have _2 " air resistance

when the cradle II in motion, R - reaction force; _ and R - they
2

are respectively moments of air resistance and reaction force. All

moments are calculated about the point O.

Add equations (1.2) and (1.4); also add equations (1.3) and

(1,_). Removing from these sums the reaction _, we have

TCZl* z2) ÷ (cl _1 ÷ c2 _2) k ÷ _x zI ÷ zz)_ +

J I -o • 1

Zndex D means that the moments have been found about the point D.

Suppose that the mass ohanses steadily and the full lupply is

sy=metrical about the two axes of symmetry of cradle. Thin the

reaction moment according to foz_nulae 2, Chapter V is given by

._ £._y r r v2

(1.?)

Where V12, _, _ are vector function of time arising from carioli=o

moment of particles, 1_ and 1_ are relpectively the per mecond input

and output of kinetic moments of particles in reaction motors. These

moments are about the point D. _ is projection of relative momentum

of particles un aXiS Oy. We will have have _ - Qq cos _2 + Q2 sin_2'

where Q1 • comet and _2 = coneS.

i



3. Construction of Lyapuov functions_ We w111 8uppoae that

r r

11 and 12 are automatically regulated in much a way that there is a

uniform tilting of working wheel i.e. _71 • comet.

Pro_ecting the equation (1.4) on Os axim and restricting to

tens of firmt order i_finitosimal we get

Here k 2 - is the constant of air resistance#

of carioli8o moment of particles about the point 0 on Os axi8;

m2r C are positive and decreasing functions of time.

(1.8)

v2_ i8 projection

C2 and

Bet up a positive definite function

(1.9)

In accordance with (1.8), derivative of V1 will be negative and

=an be put in the folZo_Ang fern

dt = + *

Xt iat therefore, easy to see that am mass changes

decrease exponentially.

_2', and _J_2,

Pro_ecting equation (1.6) on the axe80x and Oy and restricting

to terms of firmt order infinitesimal in _eepect cv variables 2' '

and we have

b

(1.1o)

k
%'Imm
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where

(1.11)

,_A1 " AI + alr ' BZ + m2rl) " 2m2rcr D, G1 - C1 + mI

are corresponding inertial moments about the axes passing through

the pointDas orion, D;b_a:d b_at. constantsof autopilot.

Set up a positive definite function of Lyapumov

+ C 1 ( + B2) 02 + Cl i°2 . .

(1.12)

Suppose b _mlr D + m2 (r D - tO). If the functions of time _ ,_and _,

are non-increasing then in consonance with the equations (1.10) and

(-1.11) dVi/dt will be negative and definite.

From the functions (1.9) and (1.12) it follows that Lyapvov

characteristic numbers are positive for the equations (1.8), (1,10)

and (1.11), Xf this system of equations is consistent _8] then the

non-linear system of equations dealing with the tilt cf reactive

carriage on the horizontal plane will be asymptotically stable

according to Lyapuov.

If the reactiee oarrlage moves on the surface of a planet

r
then 11 • O, kI • k2 • k • O. Thus, as before uniform reactilinear

motion will gain a_ympototio stability.

l
i
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4. Stabillty of sons-wheel carrlap with non converted

autopilOte Suppose the autopilot constants b I and b 2 are equal to

sere. Let us neglect the effect of resistance and the internal

lotion of particles. Equations (1.10) and (1.11) are written in the

Xn these

r'_ me

Cl #. °1 _*,2rD (rD _rc)

(1._)

(1o1_)

_. "I=D + =2 (=D " rc)- - - - - (1.1_)
A1 +

.-,./

_', /an_ _ are positive functione of time.

We will examine the system (1.1)) for arability of sere solution.

Set up a function

where Pl' P2' P} are certain function of time and

Pi (.t) _d: • const (i = lo 2, )),

/ is moss unknown constant.

dV
Zf, aocordlng to equatlon_ (1.1_), --_-_-_0,

then _ t 0 andS, stabilise because in that case

f
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0o" - 'z 'dl _/ p_(O)( "_%) . p2(o)Oz ÷ p_(o)._,2'0 "rOe

Further let

d I _0, d2._0, d3_0.

dv • f'1 Oz _z -;_z_,1) _ zd"T- ÷ _2 + (:_) ÷ ÷

IPl " J

dV
In order to ennure that --_0,

follov_ng conditions are eat_ef_ed

it La sufficient that the

f"t_°' _2_<°' f3 + _' 2f'I_°'
(1.16)

(I._?)

" 9"t - ::p_ (I ) +Pz _

L ___
L.
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- _- p1_(1 -_ [) - _2_.,.x,3 _ o.

" (_3 ÷ >"2_1)

(1.20)

Let ue put

P2 "YPl' P) "_' (_"_) Pl'

where _-im some positive oo=_tant; _ is constant; while _" (5-_.)

Hence_ _ O.

Oo

Condition (1.18) il satisfied while the remaining conditions

assume the fo_

_1_o, (1.21)

'_1 I, >-, /_J
" _Pl,_'_y_''' '( C/_- 1) "_ .

Condit£on (1.20) remains unchanged_

(1.22)

(1.2))

Let tho procoee of the chan_e of sam| of tho carr£age takes

place for a finite time T, then when t._T_ _, /__/_ are constant and

and are choeon in such a way that tho equations 1 -/_ _T ÷

These are molved to find and
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where

_" _ # T" I.

l

,+...,
(1.24)

The following condition

_T T " _°_T _ O.

is necessary.

must be greater than zero because in the opposite event_ _ O.

Then the condition

is satisfied.

_ O. Taking into account the condition

C_-_) >o,

We conclude that _ >_ > O. Therefore, according to (1.24) _e have

T -r _T

_u_ there exist_ a .mall and positive number (as _all as we

please) such that the Pelation

i_ satiified.

_ote that condition (1.26) Inplles (1.25).

4
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Condition (1.2.0) may be written aa

.) '( ...._1 • .,_ _,c¢-_ _-._# ÷r_) 2 .

...... _ _ _÷[_¢1 >f ;,_ ) • < ¢ - 1) 7 2
1

ChooBe P1' such that

..i--=_.. (t),
Pl

Where

i1| N _ I n l Jim !1 i_, _ /_

.r>.[ 1 - %,'_' + _'_ I+1_ ( :p- _ - /p.. •
Thell t}le coudit±on:; will be especii:lly t'ulfil_e¢l (1.2q),(1.23) & (1.26)

t
. C x (t) dt

Sup]pose Pl " • o

Then we have
T

- " x (t) dt

Pl _e ° = d_. (1.27)

The above disQussion is su=aari=ed as follows. If mass changes

only for a finite time then there exists a T such that whenever

t _T,

whoso _T' /T' _ar. _=sitive oonatants. Further, if there exists

0- > 0 such that (1.26) is _atisfied then the motion of sons-wheel

chrriace is stable and

Actually, suppose the followi=S conditions are sat_nfied
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them we may write

Where _ is determined by (1.24) and

P ._/-p1(O)(I+7 i"2÷ P2 (o÷ p3(o).

(1.28)

(1.29)

(1.3o)

In formu_e (1.28) - (1.30) let us put

pl(o) . 1, p2(o) .

o"
|

_(o) .-_( f_ -, ), d_- •

x (t) dt
o

Xf the mass changes for infinite time, then we can state the

following about the stability. If there exist constants ,'_, _and

such that

_(o'-_) _ o, _ o

and the integral

_-,___ __.___,d.
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Converges then the motion vould be atablpo

5- Special Cases of 8tabilit_ of M_no-wheel

Carriage 9f Variable l,a.a,.ss.

Let us aisule that a disc in used for the transportation of

passangors. Ift during the aQoeler&tion period the me=one of reaotive

fcrcoB in 8roatl then with stabilized motiont i.e. ehon the motion is

suffio_ently fast, wa shall oonsiddr that the magnitude of the above

moment i_ £airl_ s=all. Stability during acoelerationt as we h&ye

already pointo_l out0 san be secured by movtns forward the oorrosponding

s_lpports 6 (see _iguro 1_).

Consequently, we will think that _t A and 0 are considerably

small. In this ease _o_ 0 and _o n 0 and we amy _xan£no instead of

the system (q.13) the stability of sere solution of the tquation

who r'o

Phynioally ste.bility amine the stability against lateral _olts.

Consider the Lyapunov J,Punotiol

Suppose the following conditions are satisfied

_o, _._o,

1 j .... I.-.-.,. _ - eli (t) :
-t -t

(_.33)

I

I

", L .,,.i.dlln
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Then we have

dV

Put p(t) _ It the q(t)s s'l(t). Suppose s(t)> O.

- ss "2, therefore it is necessary that we must have

i>-o.

(1.3_)

Since q =

Thus the zero solution of equation (1oD1) will be stable if

the function s(t) is finite positive and increaslngo

Let q(t) - 1, then function p (t) must be equal to s(t). Suppose

the conditions l(t)_O, s(t)_d_ are satisfied. Consequently, the

zero solution of (1.31) will be stable if the function s(t) is positive

and decreasing but it does not become zero.

Note that the functions are not strictly inureasing and

decreasing. If the process of the _h_nzA _f mass consists of a

finite number of function s(t) and besides if s(t)._O, then the zero

solution of equation (1.31) is stable while it i_ possible to obtain

explicit limiting values of change of the angle and its derivative

with respect to tile.

Put p(t) = _ q(t), where _- c_nst _0. We write the final

condition of fomula (1.}3) as

q



q(t) = •

I. Let the system (x,y) be fSxed a,,_ _et o}_t in th_ horizontal

plane of sle4!Ze motion. De)_ote th- coorr]in:,te_; of ir.erti,u] c_ut..:' of

_].c,d_<,_C by x :_;,d y. We will _gleet the din:'_l_'(:_.mnnt r,f ooF_l:t C abc,u t

the. sledge.

P.o. 15

Fig.15

i

?,,,

I

i!

k
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The position of the system is fixed by form coordinates x, y, <_ and

_, where _ is the ankle between AB and th_n at,is x, _ is the ankle

of inclination of front shoes to the axis AB (see figure 15).

Coor_inates of point A and B are respectively taken as Xlo Yl

and x2, Y2" There are two non-holonomous constraints on the motion

of skdge

¥1 = _1COa _- _'I sin_P[: O, 42,1)

F2 = _2 cos (_,,_) - *2 si_ ('_+_) . o. (2,2)

Constraint (2.1) _akes the velocity Of point A in direction

perpendicular to rear shoes equal to zero, constraint (2.2)

makes the velocity of point B in a direction perpendicular _o front

_here

Kinetic energy of the aleds_ is written in the for=

T _-_ i__(C • y2) , Z_2, Z2J ÷ 2Z2._ ,_', (2.3)

m - mass of sledge,

X - moment of inertia of sledge about the ve_'_ical axls

through the _oint C;

12- mom®nt of inertia _f frout

about the vertical axis through the point B.

= and X are known functions of tame _etermined by the law of

combustion. X_ is constant.

t
l

k
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81ed_e moves under the action of force released by the change

_f mass with air resistance and fri_tlon of _ki_Js o We will

ass_,mo that the interval motion of particles in sledges and the

_rocess of their flow and the possible sucking in of air particles

ate symmetrical about the axis AB. Znternal motion of particles

brings into play carioliso force_ proportional to _ and perpendicular

to the axis ABe Therefore. the generalized reaction forces may be

• written in the Yorm

_ X " I COS .+ sin '+'t

C2.4)

" 3 -,'I o,

where' 1" J2 and",_ are known function_ of time. When the process

of change of mass takes place on the surfac_ (Mosherky+s case)

functions',,_ 2 and" _ '3 are equal to zero and" is the force given

by Hoshersky°s formula.

Generalized forces of resistance are

O'x • " Q1 cos'_i'÷ Q2 sin _ ,

_jr = " ql sin,-;' - Q'2 c°s_-t' '

_++" " ' 1
(2.5)

where _1 and Q2 are pro_ections of prinoipal vector of resistance

on AB in the opposite _iroction and along a direction perpendicular

to J_l f2 o is resistance coefficient of the snow coating when tho

• +
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front 81£dea longitudinally| Q_ and Q4 are _constant) coefficient8

of air resistance vhem the syiteme linked with rear and front akin

are rotated. L *_*• ,- moment on the axis of rudder.

We will suppose that air resistance durinK translational motion

is proportional to the Iquare of velocity with coefficient ko For

the aake of convenience, we aanume that the center of prenaure

coincidel with the inertial center of sledge. Since the dietance8 of

the point4 A and G from the instantaneous center of velocities are

/A - 1 ots_' and ,'C " ! a2 + 12 ctJ'l° ' we get

Q_. _ (af 2 co.,l'÷ bf_) + ks r2 Ca2 ÷ 12 cts2_'), (2.6)

f2mga
Q3" 1 sin_ ÷ _a _,_ 2 (a2 + 12 ct_2,1 ) tsar. (2.?)

Here S denotes the &re_ of pro_eotion of aledge on a direction

perpendicular to ABe fl " denotes the resistance coefficient during

loneitudinal alldi_g of real (8kia).

Since

z 1 = x- a con_:, x 2- x + b cos,t,

71 - _- a ain_'t, 72" 7 + b sin_ ,

therefore_ oonetr#int equations (2oi) and (R.2) assume the form

r1 - t co,,_-, ,,in_- a_- O,

r 2 - 7 co. C_÷'_) - x -in (_ ÷:_) ÷ |,_'oo,_- o.

(2.8)



2e Equations of motion and determination of reaction. We

will find an expreeelon for reaction and form the equations of motion

by the method undetermined multipliere explained in 2, Chapter IV.

We have

P'x " It, p'y - re:r, p%;.- Z_'!'+ 1'2,; ., pt.I. ., 12 ('..-,'÷_'),

Ft 1 n B coa'_-_ m e:i.n ::' - a .. I - Z2 • Ot

4" _t

Put 11 - I - Z2 and x J_/ . _"n t then the matrix !I_ i,

in vritten as

_.2 . al _2 a2 b2

i1 cos _ ..ZI" + _ ©o8_,,

Therefore 0 the Lnverme matrix of ooeffLo$ents _BOkt,llie

|

:1:1 (._ 2 . a2 + b2 oo82_,) 1 t (ml -'_2) ooe !'

11 (el- 2) oos I 2

8olve equationa (2.8) for t and

t - ( 3,ot;s_, oo,_'- i siu_'f')_T,

:r- ( ]. ot,=q- ,i=._(,÷ a oo,.:_')"f'

(2.9)
i

1
i
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Then the special derivatiTei occurin8 in andet.r,lined multipliers

are obtained in the fo_

DF e -,

1 1 ("_2"" Q2) -_-I ( " * q ) z_ 2 ots'_,Bt -" T " "

÷ _ (Q_ ÷ ) cos, -
sin".'

-I
(a sin2,-; + 1 cos2": ") 2 ÷ 1/i"l'

Undetermined multipliers are siren by

-, (,z -.2) ¢:i - oo.'_1 " m 2 + (aZ - )1 "J °tgtl + 2', i 2
_-2sin2r i + 12cos2_ v 2 sin , .+ 12 cos "'

t (.._2

• "_ 21"_ i

., m (a '2 Io_ .' sin 2q + 1'; sos 2''

- a2) 0in2¢_'+ bl coa2"_ ('_ 2" " Q2 ) + (a sin2E + 1 com2"l ) ('-;"'",_.+i i')

' ._ sin2tl,+ 12 oos2,i •

(2.1o)

)÷

+ _'1 - ., "'- Q2) oom'.i- 1 (_i' !'* Q_!')oom',:
(2.11)

In aooordance with (2.3) - (2.5)_ equations of motion of mlodgs

of variable mama are written as

• ;.. (-q,_- %) .=.n_,÷(_l*z,"- %) °o.!. ,%,,

i ,, flmKab:i'+z2'_'-- ,,,- ,*,,,!,-(_,) + q))_ ÷A_,

Z2 ('_i'+_')- - % (_-÷'4;) + L 1 ,

(2.12)
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J
,j

q

According to analTtioai approach to oonutrainta (2.8) for

8enerali_ed reaction forces ve got the formulae

A - - %1a + /2 b cos .

It follows that '_ and1 2 in absolute valuel represent the lateral

reactions of the points A and

3. lateral stability of Iledge and automobile of variable

masse In order to avoid the dangerous drift of mkim i.e. slippinE

of rear Ikis in the direction perpendicular to £B_ ve must have

'

where _ is the rolistanoe coefficient of late_al ehift of akia.

To _vo£d ilipping in d_rection perpendicular to front Jk{s e the

following condition must be aa_iaified

_2 is reuistance coefficient of lateral shift of front mkim.

According to (2,10) and the valuem

condition (2.1_) ameumel the fo_a

t



,,,2 ÷,lvA _s P,"

(2.16)

Zn this

al - _a _ ÷ 12 .

v1" _I _ ek _''

that 12 and x 2 are small as compared to _:,

al- _2
vl " - bl _,_"

then we

In accordance with (2.4) - (2.?) we will have

(2.17)

. } "--a. (af2oo,  fl) i o

Forlulae (2.16) and (2.17) can be resarded as modification and

refinement (irreat aoouraoy) in the conditions of lateral stabilit_

and au_olobile and sledge of variable nass. 8ilcLlar details can be

worked out for %he condition (2.15).

It may be noted that the values of lateral Peaotions_ 1 and _2'

on which dspendm the stability of |ledse on turnin| are seen to

depend on pull and the angular velocity of fuming of the emdder.

Thimaooountl for the factor

I



(2.18)

on the right sida of (2,10)

On the =ight s_.do of (2.11) _ may take out factor of the type

(x 2 sin cos2 ) sin. 

The signs of (2.18) and (2o19) are the emma as those o= " 1 and /2"

Whe_ the sledge or automobile turn_ three actions tak._ place

1) _irst transient curve_ _0; 2) motion with fix,_d rudderS= 0

(in pars 4 we _ll sh_w that in this case sledge acquires circular

motion in a circle of constant radius) 3) secon_ transient curv_'?_, 0.

_'rom (2o18) and (2o19) it _an be _e_ that o_ first traueient cur_e

reaction is 8rester tha_ the value when _= 0 wher_m in second

transient ,_urve cont_'_ry to the first one it is less. Therefore, we

can _o_aulate the following law with reference to the sledges of

v_riablo maeso

It is _alled law of E._,. Chy_a_ov. To maintain stabili'_¥ on

turning at hiKh speed reduce the p_._ll on the action of sledge along

first tran_isnt curve and on the contrary inere_,_¢ it on motion of

sledge _lo_ th_ _voond transient curve. The value of least A may

be dster_ined from the condition of lateral stability when the motion

is circular.

AccordiuK to last t_ equatton_ of the system (2.12) we _et

f •
I



1
( ×2 sin2_ ÷ 12 _os2_ )-I "_12_,,_,cts _, + T

_a

.,T/.1 ( *_1" Q1) cos,_'÷

+-_1 _+ _/)" L (2.2o)

According to (2.4) - (2.7) t the terms _n square bracket Bay be written

in the fore

1"_ 1 ooa_- mS Car 2 + bf 1 cos_) +

(2.2'1)

Ferule (2.20) shows that the pull _r I decrease the angle of

rudder _ | when '_ is positive it introduces an additional positive

factor in the expression for_,'a_d _ negative,Jintroduces a negative

factor. Free (2.20) - (2.21) we find the resistance to the slidin8

of shin and air resistan_e to the translational motion of sledge act

in the opposite di_ectionn. Tho_ docroase_when _ is positive and

increase with negative_e

Blase _2_ is principal vector of.carloliso forces and _

is moment of those forces about the center of gravity of the sledge,

then we have

Equality in (2.22) holds for surface coabustio_ when_2 O, % O,

and in the case when cariol_o torsos ha'_e a resultant-at a point As

(2020) and (2.21) sh,_v that oarioliso forces increase the rotation in

angle vhile the air _no_ reeistanc_ to the rot_,+,_I_,on of sledge

|

L ...... -.J'



decrease the rotation in angle

_. Nature of motion in mpecial cases we will examine some

special cases of motion of sledge and automobile with variable mass.

t) Suppose during the entire motion_'- O.

system (2.12) gives

Last equation of
'1

Since l_ctg_repreaent8 the velocity v A and is consequently a

boundl¥ value, therefore, by equations (2020) and (2022) ve get _s

const, However, this constant may be zero as is indicated by the

constraint equation _2o28), and thus we have _Om _o m constants

From equation (2.9) we find similarly that

- Fo = (x- x o) ts _o"

From this if follows that in the present case rectilinear motiom cf

81edge takes place. Let _P n O, for the chosen system of cQordinates,o

then the first equation of the s_stem (2.12) according to formulae

(_o6) _nd (2el,) is _itten as

÷ bfl) " (2._4)

)

i

When the process of internal notion of particles ia sledges sets in,

the relative derivative of principal vector of relative momentum is

equal _o let., If the lass changes v_thout suckin_ ia air particles,

the force _1 ia equal to the per second decrease of the n_lentua of

particles.



Here U r

da
= - u r. (2.25)_1 dt

_s relative velocity of fllght of particles. It Is seem .

from the equation (2.23) that rectilinear motion of sledge is

equivalent to vertical ascending motion of point of variable mass if

the acceleration of gravity is equal to gl "I (_f2 ÷ bfl) and the

reelstance coefficient is k.

Let u r = constant, and the law of combustion be f • mm_1

linear f • e'_t or f • 1 - _t. Xn the first caN, put

or

C2=
III 0 _-

in second case, let

kSu r
0 2 kS= _ (af 2 ÷ bfl), = 4

mo_ '0

We may then obtain an expression _5) for ths velocity of sledge in

the form

_= O ;f'_ dt e _,= fm)6.;f-)_ dr,

Xv and N v are Bessel function of first and second order D an arbitrary

(2.26)

constant. (B) 6uppose the sotion takes place with constant angle of

rudder ,_ • _O" oQnlSan_, Radius of curvature of trajectories of

the points A and B will be

| m



#A • i ctS_/o " comet, PB • _tn 1'' • oon=t.
- '#0

Therefo;._ the sledse must move _n a circle of constant radi_,

Xntegratln_ the constraints equations (2.9) we get

x • C1 + 1 ctg :Jo

7 - C2 - 1 ctg _o

Constants C 1 and C2 are equal to

(2.2?)

C1 - x o- 1 ore 3 o +in Co" a cos _'o'

C2" 7o + 1 ctg _o cos _o" a sin +o"

In aocor_nce with (2,2?) we have

c_)2 c2)2 2(x - + (Y " " P c"

Consequently C 1 an_ C2 are regarded as the coordinates of the cente_

o£ the circle.

Last equation of the system (2.12) rill assume the fozsa (2.23).

For motion at angle_._ve get aooording to (2020), (2.21) and (2°2_)

T-

OOS

2 21 2 o 2 - _ _. o .
' m (x sin _0 + 12 °°S2_o ) - "

, d'.

_2.._.. (,2 t_ _o÷_2ors_o)2 so,_o sin_ o
m _,x .,.n ÷+. co. _o )

Zn order that the o_roulsF motion o! the Jlodlo iJ uniform _t _e

neoessa_7 and lufficient _hat the riKht aids of the expression (2o_8)

tends to |e_oe Simeon" 2 _) and Q) awe ooneiderabl7 smaller than_/1
+'!

1
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an_ any air resistancet therefore _r_th an angular velocity _ not

very large the condition is equiyalent to the requirement

"'_/+1 " 1 cos _o

(2.29)

When the ankle _ o i8 e_allt we get

(af 2 + bf 1) ÷ key 2,

_trictly speaking, when condition (2.29) is satisfied we do get

uniform rotation because the angular velocity im equal to

j_ 2

II (x _ llill'+-" _ 0 + ]'_ O°ll_ _ 0 )

_gular_: T¢locity IrJ.ll _ constant only

When "J/2 " + (2.30)

Suppose the const_uction of sledKe iu suoh that the relation

between 11 and m remains constant durin_ t_e es_tire motion t then x •

constant. If the fol_a_a (2.2_) hold/ Koo_ f_ the _ull (on drauKht)

then u_der conditio_ (2._0_ or in the fermi a_._ -___ equation

(2.2;) _an be _itt_n in the ¢om

Here

+

..._ ,._++,..,. + .+. ,_'_+._,+

+



!.

t

t

in r ai. _o ooe _o

.:.. .
o 0

S' " _ (at2 + b_1 oos ,_'o) sin _o

x2 sin2_ o + 12 oo

,in _o co.
k (a2 tg _o ÷ 12 orb :_o)212

o )

o
i

Equation (2.31) can be diseusBed in the came _nuer ae equation (2.24).

Buppose the r_dder is not fixed at an angle obut its axle

supports moment L_, determined by (2.2_). Last equation of the Byatem

(2.12) assuaea the foz'm

x2 -- %&.

Denot_ b7 '_/B and "'b the perturbations of the angle and the angular

velooity of the rudder at a oertain moment t B for the t ._/t B we 8et

It is, theretotw, concluded that motion ot sledge in a oircle of

oonntant radius has stab¢_it7 of its own ki_d.

V) Suppose the angle of rudde_ oan be regarded as a _ven function

of t_me _ =_ (t). Taken8 into conaideration lair equation o_ the

Bymtem (2.21)t _quat_on (2._.0) can _e vJ_tten as

Here

t



' T

f_(t). - z.1!(a_2 " _ _ " Q3) sin2'; ÷ m12_,cts_l .I
• z (2 ,in2_.÷ _2 co2_)

kSZ (a 2 tS_ + 12 otS'_ )2 sin'l oos-I
t2(t ) ., 1

• ll (x2 sin2_ , _2"_0.2_)

If we put k u O_ then the problem of notion of sledKe ie solved

:i.n quadrature.

CI" kmO • •

Actually we have

- \" f1(, ) d'_ i
0 t 0

(2.32)

Formula (2.32) 8ives the angular velocity of rotation of a stream lined

sledge. In the general case _ "i " Integration (2.29) we1

find the expression fur the coordinates of center of gravity of sledge

of variable miss.

g) We will examine the notion of sledKe of variable mass with

free rudder when L _,• O. Last equation of the system (2.12) takes the

form

z2 (_t * _ ) "- % ()+ _ ).

we thus get

tt'+ _,,, _'o + ,_'o +
z2( _o ÷ _ o) z2

% 1 • J

When t--_, :_ i we have

!



_upposo the a.nt_o of front skis attains the value (2.34) then

4, _ • Oo _nco _A • l"_ _t_/ 9

adopted bF the point A, we find

ain_/n •

_horefore, _= 0 as SA.-_.

where SA is the path which could be

1

8in _;o o

If wemake the rudder free, then the sledges of variable mass

hove in rectilinear motion the _rection of which is determined by

formula (20_4).

m

q
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